DT MARINE TOW WINCH MODEL 210EHLWR

S/N 1095

WARNING

PROTECT YOURSELF AND OTHERS READ AND UNDERSTAND THESE INSTRUCTIONS BE SURE THESE INSTRUCTIONS REACH THE OPERATOR

WARNING

DUE TO VIBRATION DURING SHIPMENT, MOUNTING SCREWS ANDELECTRICAL TERMINAL SCREWS MAY HAVE LOOSENED. ALL MOUNTING AND TERMINAL SCREWS MUST BE THROUGHLY CHECKED AND RE-TIGHTENED IF NECESSARY BEFORE POWER IS APPLIED TO THIS UNIT.

WARNING

THIS WINCH IS NOT FOR MAN RATED USE

WARNING

GOODS ARE NOT DESIGNED FOR USE IN THE LIFTING OR MOVING OF PERSONS

> The system described herein are neither designed nor intended for use or applications to equipment used in the lifting or moving of persons.

WARNING

THE CABLE ANCHORS ALONE ON WINCHES ARE NOT DESIGNED TO HOLD RATED LOADS

Therefor a minimum of 12 wraps of cable must be left on drum to achieve rated load.

Table of Contents

1.0 GENERAL INFORMATION

1.1 User Responsibility and Safety Precautions

- 1.2 Introduction
 - 1.2.1 Purpose
 - 1.2.2 Model Number, Serial Number and Options
 - 1.2.3 Warranty
- 1.3 Equipment Description
 1.3.1 Capabilities and Limitations
 1.3.2 Specifications and Descriptive Data

2.0 FUNCTIONAL DESCRIPTION

- 2.1 Major Assemblies 2.1.1 Drive Assemblies
- 2.2 Interaction of Major Assemblies
 - 2.2.1 Introduction
 - 2.2.2 General Theory of the Electrical System
 - 2.2.3 General Theory of the Hydraulic System
 - 2.2.4 Hydraulic Schematic
- 2.3 Options
 - 2.3.1 Level Wind
 - 2.3.2 Remote Control

3.0 INSTALLATION INSTRUCTIONS

- 3.1 Site Selection
- 3.2 Packaging and Handling
- 3.3 Installation Procedures
 - 3.3.1 Welding/Bolt Down
 - 3.3.2 Hydraulic Requirements Prior to Start-Up
 - 3.3.3 Electrical Connection Requirements
- 3.4 Installation Checkout
 - 3.4.1 Phase 1 Installation Inspection
 - 3.4.2 Phase 2 Turn On and Preliminary Tests
 - 3.4.3 Phase 3 Installation Verification Tests
- 3.5 Cable Installation
 - 3.5.1 Cable Termination on Drum
 - 3.5.2 Spooling
- 3.6 Slip Ring Installation

4.0 OPERATING INSTRUCTIONS

4.1 Control Console

- 4.2 Operating Procedures
- 4.2.1 Operator Turn-On
- 4.2.1 Cold Start Operation

4.2.3 Shutdown

5.0 PREVENTIVE MAINTENANCE

5.1 Introduction

- 5.2 Maintenance Plan
 - 5.2.1 Lubrication Schedule
 - 5.2.2 Cleaning
 - 5.2.3 Brake
 - 5.2.4 Cable and Hoses
 - 5.2.5 Fasteners

6.0 CORRECTIVE MAINTENANCE

- 6.1 Troubleshooting
- 6.2 Removal/Replacement
- 7.0 PARTS LIST
- 8.0 APPENDICES

Appendix "A" : Wiring Diagram Appendix "B" : Cable Handling Information Appendix "C" : Hydraulic Systems Troubleshooting Tips

1.0 GENERAL INFORMATION

1.1 User Responsibility and Safety Precautions.

This equipment will perform in conformity with the description thereof contained in this manual, its accompanying labels and/or inserts when operated, it is installed, maintained and repaired checked periodically. Deficient equipment should not be used. Parts that are broken, missing, plainly worn, distorted or contaminated should be replaced immediately. Should such repair or replacement become necessary, we recommend that a telephone or written request for service be made to the DT Marine agent from which the unit was purchased or directly to DT Marine Products, Inc.

This equipment or any of its part should not be altered without the prior written approval of DT Marine. The user of this equipment should have the sole responsibility for any malfunction that results from improper use, faulty maintenance, improper repairs of damage or alterations made by anyone other than DT Marine Products, Inc. or a service facility designated by DT Marine.

1.2 Introduction.

1.2.1 Purpose.

The purpose of this manual is to provide operating instructions and maintenance procedure for your DT Marine Products, Inc. unit.

1.2.2 Model Number, Serial Number and Options.

This manual covers the Standard 200 series and its options. Your particular unit model number and serial number are listed on the enclosed warranty certificate.

1.2.3 Warranty.

The warranty is included as Section 1.2.3 and its terms are stated on the following Quality Assurance Certificate.

DT MARINE PRODUCTS, INC. 9901 TANNER ROAD * HOUSTON, TEXAS 77041 (713) 460-1400 * FAX (713) 460-3585 QUALITY ASSURANCE CERTIFICATE

Product: DT Model : <u>210EHLWR</u> Serial Number : <u>1095</u> Bare drum rating <u>2,000</u> lbs. line pull @ <u>0-100</u> fpm.

DT MARINE PRODUCTS, INC. certifies herewith that this products was manufactured with the utmost care in respect to workmanship, performance and material used, the contents of warranty are as follows:

WARRANTY

The manufacturer warrants that this DT product has been tested for quality control to insure optimum performance and repeatability of results. It further warrants that this instrument is free from defects in materials and workmanship. Should defects in materials or workmanship develop within a six(6) months period from delivery of the product, the manufacturer will service or repair the equipment without charge, except for rotating machinery which is subject to the warranty offered by the original manufacturer.

If the manufacturer determines that a fault has been caused by the misuse, abnormal operating conditions or repairs by unauthorized personnel during the warranty period, repairs by the manufacturer will be billed at a nominal charge.

The manufacturer reserves the right to perform warranty service either in his own factory or at an authorized repair station. All repairs and replacements of parts under the above warranties are F.O.B. factory or service branch.

QUALITY CONTROL CHECKOUT

Measured speed: <u>0-100</u> fpm. Static dynamometer capacity @ bare drum <u>2,000</u> lbs.

This certifies the checkout of all components, mechanically and electrically, to insure conformity with the performance listed above.

Signature:_____

Date: _____ 20_____

1.3. Equipment Description

1.3.1 Capabilities and limitations.

The DT Marine model 210EHLWR is a self-contained, electrohydraulic, variable speed, cable-handling system specially designed for the marine environment.

1.3.2 Specifications and descriptive data.

Overall dimensions Width - 42 inches - 46 inches (Includes level wind) Depth Height - 46 inches (Includes level wind) Drum dimensions - 36 inches Flange diameter Drum diameter - 20 inches Drum width - 12 inches 1000 meters of .322" diameter cable(leaves Cable capacity 2" clear flange). All welded steel with stainless steel Construction hardware Finish Sandblasted to near white metal and coated with three-coat epoxy system consisting of Zinc primer, one tiecoat and topped with Polyurethane paint. Sealed, self-aligning ball bearing type. Bearings Drive system 10 HP, 230/460VAC, 3 phase, 50/60HZ, totally enclosed, fan cooled electric motor driving a hydraulic pump that in turn drives a hydraulic motor connected in open loop configuration. The hydraulic motor is coupled to the drum through a planetary gear reducer that is attached directly to the winch drum. A multiple disc, fail-safe brake is incorporated into the final drive and is located between the hydraulic motor and the gear reducer. The hydraulic reservoir which is supplied with sight level gauge and drain plug contained in the base of the winch so except for having to be supplied with outside electric power the unit is self-contained. A self-centering, single lever, 4-way Controls control valve, with metering spool, which affords variable speed in both directions, is located on a sloping panel on the drive component housing. A system pressure gauge for monitoring performance is also mounted on this

	panel. A power control switch is located directly below the sloping panel and provides control for a full voltage across the line motor starter housed in a NEMA 4X enclosure and is located inside the drive system housing.
Braking system	A Fail-safe multiple disc brake is incorporated into the final drive and is actuated at the center position of the control handle or in the event of hydraulic pressure 2 inch stainless steel band brake is also located on the winch drum for an added measure of safety.
Performance	Bare drum rating of 2,000 lbs line pull at a line speed of 0-100 fpm.
Handling	Lifting eyes provided at four points.
Options	See Section 2.3

DRUM OR REEL CAPACITY

The length of wire rope, in feet, that can be spooled onto a drum or reel can be computed by the following formula: $L = (A+D) \times A \times B \times K$: In this formula A= Depth of rope in inches on drum in inches: A=(H-D-2Y). B= Width between the drum flanges in inches. D= Diameter of the drum in inches. H= diameter of the drum flanges in inches. K= constant factor from table below. Y= depth not filled on drum or reel when winding is to be less then the fill capacity of the drum. L= Length on wire rope on drum or reel. EXAMPLE: Find the length in feet of 9/16" diameter rope required to fill a drum having these dimensions: B=24", D=18", H=30" $\frac{(30-18-0)}{2}$ = 6 inches A= L=(6+18)x 6 x 24 x 0.828 = 2861.5 feet

NOTE: The above formula and factors "K" allow for normal oversize of ropes but will not give correct figures if rope is not wound uniformly on the reel.

F	ROPE DIA.	FACTOR K	ROPE DIA.	FACTOR K	ROPE DIA.	FACTOR K
	3/32	29.8	5/8	.671	1 3/4	.086
	1/8	16.8	11/16	.554	1 7/8	.075
	5/32	10.7	3/4	.446	2	.066
	3/16	7.44	13/16	.397	2 1/8	.058
	7/32	5.48	7/8	.342	2 1/4	.052
	1/4	4.19	1	.262	2 3/8	.046
	5/16	2.68	1 1/8	.207	2 1/2	.042
	3/8	1.86	1 1/4	.168		
	7/16	1.37	1 3/8	.139		
	1/2	1.05	1 1/2	.116		
	9/16	.828	1 5/8	.099		

NOTE: The values of "K" allow for nominal oversize of ropes, and because it is physically impossible to "thread-wind" ropes of small diameter. However the formula is based on uniform rope winding and will not give correct figures if rope is wound non-uniformly on the reel. The amount of tension applied when spooling the rope will also affect the length. The formula is based on the same number of wraps in each layer, which is not strictly correct, but does not result in appreciable error unless the width (B) of the reel is quite small compared with the flange diameter.

2.0 FUNCTIONAL DESCRIPTION

2.1 Major Assemblies.

2.1.1 Drive Assemblies.

The model 210EHLWR consists of the following major drive assemblies:

- a. Electrical assembly.
- b. Hydraulic assembly.
- c. Optional assemblies

2.2 Interaction of the Major Assemblies.

2.2.1 Introduction.

The model 210EHLWR winch is a rugged, general purpose oceanographic winch. Except for having to supply "outside power" to the electric motor, the unit is self-contained.

2.2.2 General theory of the electrical system.

The model 210EHLWR is equipped with a self-contained electrical starter system consisting of a water tight selector ON/OFF switch and a magnetic starter. Shipboard 3 phase power at the required voltage is routed to the starter box and the start is actuated by the rotary switch on the control console. Phase rotation must be correct to insure proper rotation of the 3 phase totally enclosed, a cooled electric motor driving the hydraulic pump. Thermal overload protection is provided by the starter and is adjusted by a rotary adjustment screw inside the starter enclosure.

2.2.3 General Theory of the Hydraulic System.

In the open loop circuit the hydraulic flow is filtered from the tank through a 25 micron filter in a positive displacement gear pump. This flow is circulated at low pressure through the main control valve and back to the tank when the system is in neutral. During winching operations, the main control valve(a 4-way spool valve that incorporates the main system valve), is shifted and the required flow is diverted to the winch motor. Pressure is generated in proportion to the loads requirements, and the fail-safe brake is released to allow rotation of the drum. During pay-out operations, the counterbalance valve maintains sufficient back pressure to prevent the drum from overrunning. A cushion valve is also connected to the hydraulic motor ports to relieve pressure "spikes" that could occur due to the shock loads imposed on the winch drum. This valve is a crossover relief type that will allow the flow to cross over to the other side of the hydraulic motor at the required PSI.

SEE HYDRAULIC SCHEMATIC IN SECTION 2.2.4.

2.3 Options.

2.3.1 Level wind.

Your DT model 210EHLWR is equipped with a hydroactive type level wind system. This system is an automatic hydraulically operated device that is guided by the cable angle of incidence on the drum, and is independent of the cable diameter or side loads. Position is determined by a sensing mechanism on the cable guide assembly that causes movement of a ball screw by actuating a solenoid operated 4-way control valve. The system utilizes a roller thread ball screw and a ball nut with circulating ball screws. Due to the use of high strength screw and of a hydraulic motor driving the screw, it is possible to achieve high side loads without wear on the essential parts of the system. This ability to tolerate heavy side loads allows the winch to be positioned in a convenient location on the deck without affecting proper operations.

B. Positioning and adjustments.

To be able to initially position the level wind when first spooling the cable on the drum, two push-button controls allow the system to be overridden. These two controls are located on the control console and are identified by "LEFT" and "RIGHT" stickers.

Adjustment of the level wind system is accomplished by setting the sensitivity of the limit switches (1) on either side of the level wind carriage assembly. The separation of the vertical quide rollers' bars (2) in the guide assembly is set at the specified cable diameter when the units leave the factory. The spacing of the sensing bars (3) is normally set in the field. After the cable is fed through the guide rollers and sensing bars, the sensing bars should be set so that they are barely touching the cable being used. After the adjustment of the sensing bar is made, it is time to adjust the sensitivity of the limit switches. Initially, the actuating screws (4) on the sensing bar assembly(5) are positioned so that they are extended equally and touching the limit switches. With the cable passing through the guide rollers and the sensing bars, tension should be applied to the cable(system will not operate properly without cable tension). The actuating screws should then be adjusted so

that the limit switches are actuated when the sensing bars move toward the center of the cable a distance equal to 1/2 the cable diameter. Start the winch with tension applied to the cable being spooled and make final adjustments to the actuating screws so the cable winds properly.

2.3.2 Remote Control.

This unit is also equipped with a remote control option that allows the winch to be operated remotely at a distance of up to 150'(length of cable supplied). The remote control is of the proportional type and allows variable speed operation operations similar to that of the local control handle. The remote control unit is a single lever, "JOY-STICK" type electrical controller that works in the same manner as the main control handle.

Operation of the remote control.

- . Return the main control handle to the center position.
- Operate the activated controller by pushing the handle in either the "IN" or "OUT" direction as indicated by the labels on the controller.

To return control to the main control handle, return the remote control handle to the center position. The remote and the local handle work at the same time.

3.1 Site Selection.

The winch should be installed in a location that meets the following requirements:

- Firm foundation that allows the unit to be welded to the deck.
- . Accessibility by the operator.
- . Protection from heavy falling objects.
- . Out of the way of other operations.

3.2 Handling.

Lifting holes are located on the top of each A-frame structure and will accommodate standard shackle and pins for a sling if crane hoisting is used.

CAUTION

DO NOT LIFT WINCH BY CABLE DRUM - DAMAGE TO CABLE AND/OR BRAKE ASSEMBLY MAY RESULT

3.3 Installation Procedures. 3.3.1 Welding/Bolt Down.

When the winch is at or near the desired location, remove the shipping protection and position it exactly. If the winch is to be welded to the deck, (welded clips provided) all exposed metal surfaces should be painted immediately to inhibit rusting.

CAUTION

EXTREME CARE SHOULD BE TAKEN TO ORIENT THE CENTER OF THE WINCH DRUM EXACTLY PERPENDICULAR TO THE CABLE RUNNING TO THE SHEAVE. THIS CAN BE DONE BY AVERAGE SIGHTINGS ALONG THE FLAT SURFACES OF THE WINCH (SIDEWALL, DRUM FLANGES OR WITH THE HELP OF A SQUARE TO find THE TRUE PERPENDICULAR CENTER LINE, IF IT IS NOT PROPERLY ALIGNED, CABLE LAYING PROBLEMS WILL CREATE DIFFICULTIES AND POSSIBLY DAMAGE THE CABLE, THE WINCH AND/OR PERSONNEL. BE SURE THE FRONT SIDE (LOWER END WHERE THE HOSES ARE) IS FACING THE SHEAVE SO THAT THE CABLE DIRECTION WILL BE CORRECT.

3.3.2 Hydraulic Requirements Prior to Start-Up.

Open oil filler cap located at the front of the winch underneath the level wind assembly . Fill with recommended hydraulic oil to the red line on the sight level guage.(See section 5.5.1}

3.3.3 Electrical Connection Requirements.

When installing the system aboard ship, it is wise to keep input power leads as short as possible and use # 10/3 wire or larger. It is also advised that all exposed moving parts be coated with an anti-seize compound to inhibit rust and prevent "freezing" of the parts.

CAUTION THIS UNIT IS WIRED FOR 230/460 VAC 3 PHASE 50/60HZ OPERATION SEE WIRING DIAGRAM IN APPENDICES SECTION

3.4 Installation Checkout.3.4.1. Installation inspection.

- Do not locate winch backward (with cable paid out on operator side of the winch. Erratic control with possible loss of control will occur.
- . Ensure that control handle is in "mid" position.
- . Check that proper power is supplied to the winch.

3.4.2 Turn-On and preliminary test.

1. Rotation check.

Before the winch is placed into service, it is imperative that the electric motor/pump direction of rotation is correct. To determine rotation, switch the main power ON momentarily and check to see if the shaft is rotating in the direction showed by the label located on the pump. This can be observed through the fan housing at the rear of the motor. If it is not rotating in the proper direction; reverse any two (2) input power leads.

2. Leaks.

All fittings and hoses are inspected for leaks at the factory prior to shipment. If leakage is noticed; tighten or replace as required to correct.

3.4.3 Installation Verification Test Check List.

- . Check the following conditions:
- . Location and position of the unit.
- . Controls position on control console.
- . Power supply to unit
 - Leaks.

3.5 Cable Installation.

3.5.1 Cable termination on drum.

A cable lead-in slot is cut into the core to allow termination inside the drum. A cable clamp is placed inside the drum to constrain the cable and prevent wear at the slip ring termination. A customer supplied junction box is also mounted inside of the drum. An access hole with removable cover plate is cut out on the side of the drum.

CAUTION *

THE CABLE CLAMP IS NOT INTENDED TO TAKE FULL LOAD OF THE CABLE

3.5.2 Spooling.

Whenever cable is coming up and wrapping onto the winch drum, the winch and cable must not stack up above the drum flanges or it will fall off the side of the drum and possibly damage the cable. Whenever the equipment is being raised, the winch operator must watch for the end of the cable markings or the equipment itself. Before the equipment gets near the sheave, the operator should stop the winch and start handling the equipment (See information on cable handling in the following pages)

3.6 Slip Ring Installation.

A slip ring adaptor with a pattern matching that of the customer slip ring is provided and is mounted to the external end of the shaft on the bearing side of the drum.

4.0 OPERATING INSTRUCTIONS

4.1 Control Console.

The winch controls are located at the rear of the winch at a convenient height for the operator. A 45 degree sloped panel contains the main control lever, a pressure gauge and any other optional function controls. The ON/OFF switch is located directly below the sloping panel on the vertical face of the cabinet.

4.2 Operating Procedures.

4.2.1 Operator Turn-on

- . Ensure that control handle is in mid position.
- Check that proper power is supplied to the winch and electric motor.
- . Turn on main power to winch and electric motor.

NOTE: ELECTRIC MOTOR/PUMP NOISE WILL BE HEARD AFTER THIS STEP. IF ANY LOUD NOISE IS PRESENT, SEE SECTION 6.0 OF MANUAL

4.2.2 Cold Start Operation.

After starting the system, allow unit to run for approximately 30 minutes to warm the oil with control handle in central or neutral position. After start up, Cable In or Cable Out is controlled by the control handle located on the sloping panel of the control console.

4.2.3 Shut Down/Turn Off.

- Release winch control handle, (valve will return handle to central or neutral position)
- . Turn ON/OFF switch to OFF position.
- . Turn off main power to winch

5.0 MAINTENANCE PROCEDURE

5.1 Introduction.

This section gives necessary information for regular, periodic and preventive maintenance, and for some repairs or replacements. For further information, service assistance or problems; refer to DT Marine Products, Inc. factory.

5.2 Maintenance Plan.

5.2.1 Lubrication Schedule.

Under normal operating conditions on a permanent deck installation the following lubrication schedule is recommended:

- The motor is equipped ball bearings pre-lubricated with special grease by the bearing manufacturer. This lubrication will last for the life of the bearings.
- The gear head reducer is filled with oil at the factory. After 1,000 hours of operation, drain and refill with EP-90 weight lubricant.
- 3. Lubricate control handle valve with 30 weight oil at 50 hours intervals.
- 4. Lubricate the pillow block bearing with Lubriplate 130AA or equivalent at 50 hours intervals.
- 5. Lubricate manual brake lever grease fitting and hardware regularly to insure reliability.
- 6. Lubricate level wind screw as required per manufacturer's instruction. Coat exterior of ball nut with grease.
- 7. Lubricate level wind flange bearing with Lubriplate 130AA or equivalent at 50 hours intervals.
- Check oil level of unit weekly; level should be at 1/2 inch below tank top.
- 9. Replace filter every 90 days or when erratic condition exists (See Section 6.0 CORRECTIVE MAINTENANCE).

NOTE: THE OIL LEVEL IN THE WINCH SHOULD BE MAINTAINED AT FULL CONDITION OR PUMP CAVITATION WILL RESULT AND THE WINCH WILL NOT OPERATE PROPERLY.

Recommended oil is as follows:

Shell Tellus 32, Exxon Nuto 32, Texaco Rando 32 or equivalent Emergency Any 10 weight hydraulic oil

CAUTION

DO NOT LUBRICATE WHILE UNIT IS OPERATING

5.2.2 Cleaning.

The winches will last longer and be easier to maintain if it is kept relatively free of oil, dirt and rust. Rinsing as often as possible with fresh water will help minimize corrosion.

5.2.3 Brake.

Check brake adjustment weekly and adjust (tighten or loosen nuts located on A-frame structure) as required to allow handle to lock with sufficient force to stop the drum under maximum load.

NOTE: WHEN HAND BRAKE IS WORN DOWN TO THE RIVET HEADS OR BEYOND ADJUSTMENTS, THE BRAKE LINING SHOULD BE REPLACED.

5.2.3 Cables and hoses.

All electrical cables should be checked periodically for wear, chaffing, cutting, decaying or other imperfections. All hoses assemblies in service should be checked periodically for leaks, abrasions, kinks, cover blisters or other such damages. Assemblies showing signs of wear or damage must be replaced before they cause a failure or create a hazard.

5.2.4 Fasteners.

Periodically check for loose or missing screws, bolts, nuts and parts and tighten or replaced them as needed.

6.0 CORRECTIVE MAINTENANCE

6.1 Troubleshooting

Symptom/Signal	Cause/Remedy
Loud noise when unit is started	Check for interference of fan/shroud on electric motor and pump coupler
Erratic or low speed condition intermittent fluid borne noise	Pump cavitation: Check fluid with level, check suction filter; replace if necessary.
Motor runs but winch inoperative	Motor direction is reverse. Check phase rotation of input leads. (See Section 3.4.2)
Erratic or intermittent operation of drum in one direction or complete lack of movement.	Main control valve malfunction. Disassemble and clean or replace. (See Section 6.2.3)

6.2 Component Removal/Replacement.

6.2.1 Introduction.

Maintenance of the winch consists of determining the defective part and removing or replacing that component. all work should be done after the electrical supply is shut down at the main breaker. If needed, consult with DT Marine Products, Inc. factory or its nearest trained representative for 24-hour world wide service.

6.2.2 Cable Drum.

Cable drum is easier to remove/replace if cable is removed. The drum can be removed as follow:

- 1. Open cabinet
- 2. Remove the two bolts holding the hydraulic motor and move clear.
- 3. Slide the brake out and move clear.
- 4. Remove all the bolts on the A-frame gear reducer mount.
- 5. Remove Pillow Block bearings bolts.
- 6. Support drum with slings and move sideways to clear gear reducer mount from frame and lift drum clear.
- 7. Unbolt gear reducer from drum.

	7.0 LIST OF REPLACEMENT PARTS MODEL: 210EHLWR S/N: 1095				
QTY PART DESCRIPTION		MANUFACTURER	PART NO.		
1	ELECTRIC MOTOR	BROOK CROMPTON	10WD256T		
1	PLANETARY GEAR REDUCER	OMNI	WD0330B113H1NS		
1	HYDRAULIC PUMP	PARKER	PGP511AO14OCK1H2ND6D5B1B1		
1	HYDRAULIC MOTOR	PARKER	TBOO36B5280AAAB		
1	FILTER ELEMENT	ZINGA	SE-25		
1	PRESSURE GAUGE	PRECISION	2.5X0-4000		
1	MAIN CONTROLLER	DANFOSS	PVG32 - 157F0328		
1	REMOTE OPERATOR	DANFOSS	PVREL-155U2605		
1	CUSHION/C-B VALVE	DT MARINE	CBC-150		
1	PRIORITY VALVE	BRAND HYDRAULICS	BG5-1		
1	POWER OPERATOR SWITCH	SQUARE D	SKS11B-9001		
1	POWER CONTACTOR	SPRECHER & SCHUN	CA7-30		
1	OVERLOAD RELAY	SPRECHER & SCHUN	CEP7-EEFD		
1	COIL	SPRECHER & SCHUN	CA7-30-110V		
1	STEP-DOWN TRANSFORMER	ACME	AE06-0100		
1	POWER SUPPLY	SOLA	SLS-122-017T		
1	FAILSAFE BRAKE	MICO	02-556-324		
1	PILLOW BLOCK BEARING	BROWNING	VF4S-240		
1	L/W SCREW	NOOK INDUSTRIES	SRT8746/SBN1566/FLG8283		
1	BRAKE VALVE	MARCO	H1071		
1	L/W HYDRAULIC MOTOR	DANFOSS	151G0036		
1	L/W SOLENOID VALVE	COMPACT CONTROLS	CP530-3P-8S-120AC		
2	L/W SUPPORT BEARING	CONSOLIDATED	7205-BG		
2	L/W OVERRIDE SWITCH	SQUARE D	KR1U-9001		
2	L/W POSITIONING SWITCH	OMRON	D4C1632		
2	L/W END LIMIT SWITCH	OMRON	D4C1632		

8.0 APPENDIXES

APPENDIX "A" : WIRING DIAGRAMS APPENDIX "B" : CABLE HANDLING INFORMATION APPENDIX "C" : HYDRAULIC SYSTEMS TROUBLESHOOTING

Manufacturer's data sheets follow.

SOLENOID VALVE

LEVEL WIND END LIMIT SWITCHES

Receiving and Handling

lere are some tips to help you avoid cable damage during nitial handling of your cable.

UNLOADING AND HANDLING

When unloading rects of elecromechanical cable, do not grop the reels to the ground or foor from the freight car or ruck. Reels are not designed to withstand this abuse. The weight of the cable could collapse the reel. Removing cable from a collapsed reel is very difficult, and very likely to damage the cable permanently.

When using a bar to roll a reel of cable, pry against the reel head, not against the cable itself. When moving the reel in any way, avoid contact with the cable.

Unload the reel directly from the truck or freight car onto the oading dock when possible.

UNREELING

During the unreeling process, it is imperative that the reel rotates as the cable is unwound.

SPOOLING FROM REEL

To reel a cable onto the spooling drum, the cable should travel from the top of the reel to the top of the drum. This will prevent a reverse bend in the cable. A reverse bend may make the cable livelier and harder to handle. (Fig. 3 Preferred Way.)

THE CORRECT WAY TO UNREEL ELECTRO-MECHANICAL CABLE

1. The reel may be mounted on a shaft supported by two jacks. (See Fig. 1.) By holding the end of the cable and walking away from the reel, the workman pulls the cable from the reel and the reel rotates properly. 2. The reel may also be moon ted on a unreeling stand (See Fig. 2.) It can then be unwound as above. However, extra care must be exercised to keep the cable under sufficient backtension. If stack accumulates and the cable drops below the lower reel-head, kinks will form, Solid back tension will also assure tight spooling onto the winding drum for initial service.

FIGURE 1

FIGURE 2

FIGURE 3

10/1/85

3

Installation and Spooling

GAUGING

To gauge electromechanical cables, measure the diameter twice, with the second measurement at a right angle to the first. By averaging the two figures, you will arrive at an accurate estimate of the cable's diameter. (See Fig. 4.) This method assures you an accurate gauging, since it compensates for any flattening of the cable that may have occurred during winding.

GROOVES

Grooves in running sheaves should be checked to fit the particular cable being used. (See Fig. 5.)

It is important that the cable fit properly in the sheave groove. (See Fig. 6.) If the groove is too tight, the armor wires of the cable will wear quickly and soon break. (See Fig. 7.) If the groove is too wide, the tension on the cable will flatten it, which will also result in uneven wear and premature failure. (See Fig. 8.)

FIGURE 6

FIGURE 7

FIGURE 8

Installation and Spooling (CONTINUED)

SHEAVES

Sheaves should be aligned so that the axis of the cable is parallel to a line drawn from the center of the groove of one sheave to the center of the groove of the next sheave. This alignment prevents excessive wear caused by the cable bearing against flanges or dragging across shoulders. This wear will destroy the outer armor wire long before the cable has given even nominal service. Using sheaves with broken flanges has the same undesirable results.

FLEET ANGLES

On installations where the cable passes over a lead sheave, then onto a dru, it is important that the lead sheave be located at a sufficient distance from the drum to maintain a small fleet angle at all times. The fleet angle is the side angle at which the cable approaches the sheave from the drum. (See Fig. 9.)

The best electromechanical cable service is obtained when the maximum fleet angle is not more than 1¼ degrees. The maximum fleet angle is the angle between the centerline of the sheave and the cable, when the cable is at the end of its traverse travel on the drum. A lead of twenty-five times the drum width (measured between flanges) will normally establish a suitable fleet angle. Thus a drum three feet wide should be located approximately 75 feet from the lead sheave.

TIPS ON SPOOLING

• Make certain the winch drum is in good mechanical condition: the flanges must be perpendicular to the drum core; and the core surface should be smooth and straight with no dishing. If using a grooved drum, be sure the grooves are the correct size for the cable being spooled and in good condition.

1

FIGURE 9

• Apply the first layer in a predetermined pattern that can be easily reproduced on all sub-sequent layers.

• Watch crossover points carefully, so that proper position is maintained

• Recheck the fleet angle after the second and third layers have been applied to make sure equipment is still in alignment Maintain proper back tension
 for each layer

BREAKING IN ELECTRO-MECHANICAL CABLE

After a new cable has been installed, it is advisable to run it in a test well for a short period. This gives the component parts a chance to adjust themselves to the operating conditions. Time spent in breaking in the cable will pay off in extended cable life.

10/1 85

Installation and Spooling (CONTINUED)

The Spooling of Armored Wireline cable on a smooth surface winch drum requires proper handling equipment, plus proven installation techniques. After the cable is installed, the winch operator must also use correct operating methods or the best spooling effort can be lost.

Condition of drum

The winch drum should be in good mechanical condition; the core surface should be smooth and straight with no dishing; and the flanges must be perpendicular to the drum core.

Removing cable from shipping reel

Normal installation requires spooling from the top of the shipping reel to the top of the winch drum. The cable bed layer can travel from left to right or right to left, but a back tension of some form should be held, as the cable is spooled on the winch drum. Proper back tension allows removal of the cable from the shipping reel without cutting into the lower layers and can best be accomplished by using a tension capstan between the shipping reel and the winch. This arrangement not only prevents cable damage on the shipping reel, but allows for the use of precalculated tension under controlled conditions.

Proper alignment

For a cable to be spooled properly, the angle from the winch drum to the first fixed point should be correctly established. This is known as the fleet angle and should be no greater than $1\%^{\circ}$ at the flange. The approximate distance required to develop this angle is found by multiplying the drum width by 25; thus, for every foot batween flanges of the drum, a distance of 25 feet is needed to the fixed point.

Basic spooling concept

The main concept of controlled cable spooling is to apply the first layer in a predetermined pattern that can be readily reproduced on the second and all subsequent layers.

During spooling, the cable should lie parallel to the flanges except for the two cross-over sections where the cable moves across the drum one-half pitch (½ cable diameter) to give a full pitch movement per drum revolution.

The area of the cross-over or "break" points covers about 10% of the circumference of the drum. This area is divided between the two cross-over sections spaced 180° apart, thus creating a counter-balanced effect on the drum.

Establishing cross-over points

The winch drum should have a entry hole on the side of one flange where it joins with the core. This hole should be drilled just slightly larger than the cable and at an angle to allow movement of the cable along the face of the flange without a sharp bend. A clamp or other means should be used to keep the cable from pulling back through the entry hole.

The first cross-over point is developed at the entry hole. Using a carpenter's square (held at right angle with core and flange) and a chalk stick, draw a line from the center point of the entry hole across the drum core to opposite flange. This line should be carried up on both of the flanges.

The second cross-over point is located 180° from the first and marked in the same manner. This point can be quickly located by wrapping a length of the unarmored conductor core around the full circumference of the drum barrel. Dividing this into two equal lengths, take one length (holding one end at the first chalk mark) and wrap it around the drum core. Then place a mark at the opposite end; it should be 180° from the first cross-over point.

Sometimes it is found helpful to add an additional chalk line parallel to each of the two cross-over lines. This line is positioned to show where "break" should finish. This line should be about 3" from the main cross-over line when spooling a 15/32" diameter cable and proportionately less for smaller cables.

Calculating first layer on drum

The next step is to determine how many turns of cable will be needed for the first or bed layer to wrap around the core and fill the area between flanges. It is suggested that the cable diameter be divided into the measurement between flanges; thus, if using a .200" O.D. cable with 20" between flanges, 100 turns would be required to fill the drum.

This method should work well within a half turn. If slightly more or less is required, add or remove a half turn. Judgment must be used in an effort not to disturb the bed layer any more than needed. Generally, cables will spool, or thread lay, easier if a half turn is removed than when an extra half turn is added.

After the required number of turns is determined, the cable end is inserted through the entry hole near the side of the flange where it is properly tied down and prepared for connection to the collector ring. The drum is then rotated to add three or four turns. Just enough back tension is used to hold cable in place.

Beginning installation

Using a hammer (Blacksmith) and dull nosed (3') chisel, work the cable away from the flange (starting at the break point 180° from the entry hole, continuing around to the entry hole) and insert the first length of packing material between the flange and the cable. The packing material (approximately ½ diameter of cable) is fitted into place with the hammer and chisel as the drum rotates slowly with all turns being moved into proper position. (Generally, the unarmored conductor core can be used as packing material.)

After the first length of packing has been inserted, continue to rotate the drum, adding the balance of cable required for the bed layer. (see fig. 11)

Installation and Spooling (continued)

Table of Suggested Tensions				
Cable Size	1st Layer	2nd Layer	3rd Layer	Balance
3/16	300 lbs.	450 lbs.	650 lbs.	Tension held for 1/2 of the cable length,
7/32	400 lbs.	600 lbs.	850 lbs.	of cable as each 1,000' is installed. This
5/16	1,500 lbs.	2,000 lbs.	2,800 lbs.	is done until a minimum of 200-300 lbs. is reached on 7/32" and smaller cable
7/16	2,500 lbs.	3,500 lbs.	4,500 lbs.	and 1,000 lbs. on larger cable. This minimum is then held until the entire
15/32	2,500 lbs.	3,500 lbs.	4,500 lbs.	cable is installed.

FIGURE 11

Correct back tension

Back tension is very important from this point on. Generally, just enough tension is used on the bed layer to obtain the required number of turns. Using too much tension will cause the cable to oval and not allow the required number of turns to fit between the flanges. Normal tension on the first layer would be approximately 10-15% of the breaking strength of the cable. On a 7/32'' cable, we suggest using 400 lbs. and 1,500 lbs. on a 5/16'' cable. (see table for suggested tensions and fig. 3.)

Installing second and third layers

Before adding the last turn to fill the drum on the first layer, the decision must be made as where the second length of packing material should be placed. If no additional turns appear to be needed, the second packing should be inserted in the 0° to 180° position or on the opposit (bottom side from the first packing. If an additional half wrap is required, it should be inserted (using hammer and chisel to evenly move cable turns closer together) in the 180°-360° position or directly across (top) from the first packing.

With the drum again rotating slowly, the tension should be increased to approximately 15 to 20% of the cable's rated breaking strength to add the second layer.

After the second layer has been added, again check for proper fleet angle. This may require movement of equipment to obtain correct position. Slight adjustments, using hammer and chisel, may also be required to help develop proper cross-over points.

During application of the third layer, the tension should be increased to approximately 20-25% of breaking

strength. At the end of the third layer, fleet angle and break points should again be checked and any slight adjustments made.

Completion of spooling/points to watch

From this point on, as each layer is added, the "break" points should move back slightly. This can be checked with the chalk marks located on the side of the flanges. If the "break" line moves back too quickly, it means there are too many turns in bed layer.

Should the "break" line move forward very quickly, it means there are not enough turns in bed layer. This also causes large spaces between cable turns, which allows the cable to "crack out" or develop "low spots."

Should the outside diameter of the cable vary, it should be compensated for by adding or removing turns in the bed layer. Slight adjustments in the back tension may also be needed to adjust for minor O.D. changes and overall cable condition,

Good spooling can be obtained if the equipment is in good condition and properly handled. Working with the known O.D. of the cable plus proper handling of back tension and fleet angle, will generally insure good thread lay spooling with a minimum of effort.

The foregoing information is intended only as a "standard guide" for normal hoisting conditions. It is not intended to cover every detail nor satisfy every operating condition. Many special services, such as deviated and extremely deep hole work, may require some modification of these procedures to suit the special conditions.

1

Operating and Maintenance

RUNNING CONDITIONS

Many operating conditions vary from job to job. Rate of running speed, either paying out of returning cable to the winch drum, depends upon a particular condition of each operation. Constant tension, however, must be maintained at all times. Damage from overruning or sudden release of tension may cause:

- Bird caging
- General loosening of armor wire
- Kinking
- Conductor fatigue
- Possible insulation failure

Proper judgment must also be exercised in selecting correct running gear or equipment. Improper operating angles or excessive friction holding devices could cause permanent cable damage.

STORING ELECTRO-MECHANICAL CABLE

When not in use, electromechanical cable should be stored in a dry place free from corrosive fumes, and protected from the weather. The outer layer of cable on the reel should be protected by a coating of lubricant.

CARE OF IDLE CABLE

If possible, cable on idle equipment should be cleaned, lubricated, wound on a reel, and stored in a dry place where it is protected from the weather. If it is not possible to remove the cable from the equipment, the entire cable should be cleaned and lubricated. This lubrication should be heavy enough to protect the cable against corrosion.

CORROSION PROTECTION

Electomechanical cables are normally coated with a rust inhibitor during the process of manufacture. If this initial rust inhibitor is not sufficient to last the life of the cable, periodic applications of a lubricant or rust inhibitor are advisable. Lubricants should:

- Be free from acids and alkalies
- Have sufficient adhesive strength
- Be nonsoluable under prevailing conditions
- Have a high film strength
- Resist oxidation

1

- Should not be damaging to insulation
- Preferably contain water displacement additives.

Cables should be cleaned before being lubricated. Cleaning may be done with wire brushes or other suitable devices. The entire length of the cable should be pressure lubricated uniformly,

ł

Common Cable Abuses

- Use of incorrect size or construction
- Inadequate or improper corrosion protection
- Sheaves and drums of inadequate size
- Crosswinding or piling up on sides of drums
- Sheaves and drums out of alignment
- Sheaves and drums with worn grooves or worn flanges
- Permitting lines to jump sheaves
- Improperly attached fittings

- Permitting lines to untwist
- Kinked lines
- Severe overloads
- Hammering and peening wear resulting from cables being improperly installed or handled.
- Excessive running speeds
- Overrunning or sudden release of tension
- Improperly adjusted packing glands

KINKS

Any kink in electromechanical cable will damage the armor wire and insulation, greatly reducing the life of the life of the cable. Careful handling will keep the cable free of kinks.

The Starting Loop Do not allow the cable to form a loop. If a loop should form, removing it at this stage will prevent kinking.

The Kink Here the looped cable has been put under tension and the kink has formed. The cable is permanently damaged.

The Result The damaged armor wires will wear very quickly at the kink and cause premature failure of the insulated conductor. HOW TO troubleshoot hydraulic systems by using your senses

Sight

Hearing

Touch

Smell

SIGHT

One good way to forestall problems with a hydraulic system is to periodically look over your equipment. Watch for any signs of leakage—a wet machine or hose, oil stains, low levels in the reservoir. It's a good idea to look at the reservoir regularly, not just to check the fluid level but to actually examine the fluid. If the oil in the reservoir has a milky appearance it is probably saturated with air or water. In either case, your hydraulic system is in for trouble.

To continue your visual tour take a look at the fluid conductors in the system. Watch for hose lines that are abrading or for lines that are too short when pressurized. These are conditions that can lead to a premature failure of the hose. You should also watch for kinked or flattened lines because a kink will restrict flow and in the case of a pump supply line could ruin a pump. Naturally you should check the hydraulic gauges to make sure the system pressures are within the designed limits.

Observe the action of the hydraulic cylinders. If the movement is jerky or erratic something is wrong. It may be air in the system or a bent cylinder rod.

Most important of all, make sure there is sufficient oil in the hydraulic reservoir after the complete system is charged and the cylinders are extended. Follow the manufacturer's recommendations on the fluid level as well as on the type of fluid to use.

HEARING

A good troubleshooter will listen for unusual sounds coming from a hydraulic system. The loud, shot-like, sound that you hear when a tap is closed quickly is called "water hammer." This is caused by the sudden stoppage of moving liquid. The hydraulic surge created by this condition increases with the speed at which the liquid is moving. A pressure surge may go as high as four times the normal working pressure. This can cause great physical damage to fluid conductors and other components in a system. A shockwave travels at the speed of sound in hydraulic fluid, and normal hydraulic gauges will not record these fast transient pressure surges.

The main function of a hydraulic pump is to move liquids against comparatively high resistance. When the supply of fluid is insufficient to meet the demands of a pump, the pump goes into a state of hydraulic shock described as cavitation. When this occurs the injured pump emits a most unusual sound. If there is no back pressure it sounds as if you were pumping marbles, and you can hear them rattling. When back pressure is present the pump emits a shrill whine that will have you holding your ears. Unusual sound anywhere in a hydraulic system bears investigation by a fluid power mechanic.

🛋 🗛 eroquip 5

TOUCH

When you put your hand on a hydraulic pump and wish you hadn't because it's hot, the pump is trying to tell you something. When the maximum temperature of a hydraulic system exceeds 150°F. several malfunctions occur. Oxidation is accelerated. Tests have shown that, below 135°F., oil oxidizes very slowly. The rate of oxidation approximately doubles for every 18°F. increase in temperature. It is estimated that the working life of most oil is decreased by 50% for every 15°F, rise in temperature above 140°F. Oxidation causes sludge to form, reduces clearances, causes corrosion and creates more heat, thus establishing a vicious cycle.

Just because the hydraulic reservoir is not hot does not mean there is no heat problem. A good troubleshooter will feel the fluid conductors in various parts of the system to make sure there are no "hot spots." If any part of a hydraulic system is unusually hot you can be sure there is a problem developing.

Remember, high heat can be very damaging to a fluid power system and should not be tolerated.

Another extremely damaging condition encountered in a hydraulic system is high frequency vibration. You can feel these vibrations with your hand by touching steel fluid conductors. This condition has been known to break weldments and other components and should be corrected. You can also "see" this condition by placing an ordinary tumbler of water on a steel tube and watching the surface conditions. When the water pops off the surface the condition is serious enough to warrant further investigation and correction.

SMELL

When hydraulic oil is saturated with air, or when a hydraulic pump is cavitating, the air bubbles in the system go from a subpressure condition (vacuum) to a high pressure condition in a fraction of a second which generates a great deal of heat. In fact, it has been estimated that a pocket of air in a hydraulic system may reach temperatures in excess of 2000°F. This is hot enough to scorch surrounding oil and a good troubleshooter can smell this "burned" oil in the reservoir.

When any of these abnormal conditions are present, a good troubleshooter will follow-up. Any factor known to him that could cause the irregularity must be checked out. Nothing should be overlooked. He should obtain a drawing of the system and a specification sheet from the manufacturer so that he knows the system. Although he may have to use pressure gauges, surface pyrometers, flow gauges, vacuum gauges, and oscilloscopes in order to ferret out the problem, the most important tools that he has are his God-given senses, and the finest computer ever made—his brain.

Aeroquip 7

CAST IRON

NEMA MOTORS

Heavy Duty Cast Iron construction for use on severe duty applications Frames143-447T

Brook Crompton has manufactured these motors with North American industry in mind and the low maintainence cost make them the obvious choice.

Features:

- Enclosure IP Code: Totally Enclosed IP55
- Warranty 24 months
- Nameplate Certifications: CSA ~ C/US, CE, Class
 1 Div 2, Groups A,B,C&D Temperature Class T3

Electrical Characteristics:

- Phase 3
- Frequency 60hz
- F1 Conduit box location
- Ambient 40 degrees C
- Class F Insulation
- Service Factor 1.15
- Class B Temperature Rise
- Inverter Duty suitable for MG1 Part 31 rating for use with VFD - 5:1 constant

torque and 10:1 variable torque speed range

Application Information:

- The Brook Crompton Cast Iron design motor is supplied painted in a Synthetic Enamel on an Alkyd High build primer suitable for 200 hours salt spray life tested in accordance with ASTM B117
- Motors can be supplied as 50 hz with voltages and approvals to suit export

Construction features:

- By changing the position of the rotor F2 mounting arrangements can be attained
- Materials: Cast Iron frame, endshields and oversize conduit box,Sheet Metal Fan Cover

- NEMA C face available
- Gasketed conduit box for hose proof protection
- V Ring slinger on shaft
- Double sealed bearings up to 215T frame, regreasable bearings for 254T and larger
- Altitude 3300ft (1000m)
- Shaft Material: 1045 carbon steel
- Stainless Steel Nameplate
- NPT threaded Terminal Box
- Grounding Terminal on frames and inside conduit box

DOE No. CC047A

							EFF	ICIENC	Y %				Т	ORQU	E	LOCH	KED RO	DTOR	NEMA	INERTIA	EST
OUT	PUT	RPM	FRAME	F	LAMP	S	I	Nomina	al	POW	ER FA	CTOR	FL	LR	BD		AMPS		CODE	WK ²	WT (lbs)
kW	HP	FL	4.407	230V	460V	575V	FL	3/4 FL	1/2 FL	FL	3/4 FL	1/2 FL	lb-ft	%	%	230V	460V	575V		Ib-ft ²	54
0.55	0.75	1140	1431	3.4	1.7	1.4	72.0	69.0	64.0	0.57	0.50	0.40	3.50	240	280	15	1.5	6	J	0.13	54
0 75	1	1710	1431 1/3T	3.1	1.0	1.3	10.0	81.0	71.0	0.60	0.75	0.70	1.50	275	300	24	12	10	L 	0.03	54
0.75		1150	145T	4.0	2.0	1.4	80.0	79.0	76.0	0.60	0.00	0.40	4 60	250	270	24	12	10	-	0.15	60
		3400	143T	4.0	2.0	1.0	82.5	82.5	82.0	0.82	0.80	0.40	2.30	275	300	36	18	14.5	-	0.10	54
1.1	1.5	1710	145T	4.6	2.3	1.9	84.0	84.0	83.0	0.72	0.65	0.60	4.60	230	280	36	18	16	L	0.13	60
		1145	182T	5.0	2.5	2.0	85.5	85.5	85.0	0.65	0.60	0.50	6.90	220	250	36	18	16	L	0.27	88
		3400	145T	5.4	2.7	2.2	84.0	84.0	84.0	0.84	0.80	0.70	3.10	275	300	50	25	20	L	0.06	60
1.5	2	1710	145T	5.8	2.9	2.3	84.0	84.0	83.0	0.77	0.70	0.60	6.10	240	280	50	25	20	L	0.16	60
		1145	184T	6.0	3.0	2.4	86.5	86.5	86.0	0.72	0.65	0.60	9.20	220	250	50	25	20	L	0.34	88
		3480	182T	7.2	3.6	2.9	85.5	85.5	85.0	0.89	0.87	0.85	4.50	275	300	64	32	25	K	0.14	88
2.2	3	1740	182T	7.6	3.8	3.0	87.5	87.5	87.0	0.83	0.76	0.64	9.10	230	280	64	32	25	K	0.27	88
		1150	213T	8.4	4.2	3.4	87.5	87.5	87.0	0.75	0.67	0.60	13.70	220	250	64	32	25	K	0.88	172
		3480	184T	12.0	6.0	4.8	87.5	87.5	87.0	0.89	0.87	0.85	7.50	275	300	92	46	37	J	0.18	88
3.7	5	1740	184T	12.8	6.4	5.1	87.5	87.5	87.0	0.83	0.78	0.67	15.10	230	280	92	46	37	J	0.34	88
		1160	215T	14.2	7.1	5.7	87.5	87.5	87.0	0.75	0.67	0.60	22.60	210	240	92	46	37	J	0.97	196
		3480	213T	17.2	8.6	6.9	88.5	88.5	88.0	0.90	0.88	0.86	11.30	210	240	126	63	50	н	0.39	172
5.5	1.5	1740	2131	18.4	9.2	7.4	89.5	89.5	89.0	0.84	0.81	0.74	22.60	210	240	120	63	50	н	0.88	172
		2490	2041	20.0	10.0	0.0	09.5	00.5	00.0	0.00	0.76	0.00	33.27	200	250	120	03	50		0.42	405
75	10	1750	215T	25.4	12.5	9.4	89.5	89.5	89.0	0.90	0.00	0.00	30.00	210	240	162	81	65	н	0.43	190
1.5	10	1170	256T	27.5	13.8	11.0	89.5	90.2	89.0	0.80	0.01	0.68	45 14	200	250	162	81	65	н	2.73	453
		3504	254T	35.0	17.5	14.0	90.2	89.5	88.0	0.88	0.86	0.00	22 10	250	300	232	116	92.8	G	0.77	405
11	15	1752	254T	35.0	17.5	14.0	91.0	91.0	89.5	0.84	0.82	0.74	44.21	200	250	232	116	92.8	G	2.14	405
		1170	284T	37.5	18.8	15.0	90.2	90.2	89.0	0.80	0.76	0.68	66.21	200	250	232	116	92.8	G	3.80	563
		3504	256T	47.5	23.8	19.0	90.2	90.2	89.0	0.88	0.86	0.79	30.50	250	300	290	145	116	G	1.01	453
15	20	1752	256T	50.0	25.0	20.0	91.0	91.0	89.5	0.84	0.83	0.75	60.29	200	250	290	145	116	G	2.79	453
		1170	286T	52.5	26.3	21.0	90.2	91.0	89.5	0.80	0.73	0.68	90.28	225	275	290	145	116	G	6.88	607
		3504	284TS	57.5	28.8	23.0	91.0	91.0	89.5	0.88	0.86	0.79	37.18	275	325	365	182.5	146	G	1.25	563
18.5	25	1770	284T	60.0	30.0	24.0	92.4	91.7	90.0	0.84	0.80	0.72	73.60	200	250	365	182.5	146	G	4.81	563
		1170	324T	60.0	30.0	24.0	91.7	91.7	90.0	0.84	0.82	0.73	111.35	200	250	365	182.5	146	G	10.03	810
		3504	286TS	65.0	32.5	26.0	91.0	91.0	89.5	0.92	0.90	0.84	44.21	275	325	435	217.5	174	G	2.61	607
22	30	1770	286T	70.0	35.0	28.0	92.4	92.4	91.0	0.86	0.84	0.77	87.53	200	250	435	217.5	174	G	5.64	607
		11/0	3261	72.5	36.3	29.0	91.7	92.4	91.0	0.84	0.82	0.78	132.40	200	250	435	217.5	1/4	G	12.10	843
20	40	3528	32415	92.5	46.3	37.0	91.7	91.7	90.0	0.90	0.89	0.87	59.88	200	250	580	290	232	G	4.75	810
30	40	1176	3241 364T	90.0	45.0	30.0	93.0	93.0	91.0	0.09	0.00	0.70	170.64	200	250	580	290	232	G	21.25	000
		3540	326TS	112 5	56.3	45.0	92.4	92.4	91.0	0.00	0.82	0.73	73.60	200	250	725	362.5	290	G	5 28	843
37	50	1776	326T	112.5	56.3	45.0	93.0	93.0	91.0	0.89	0.86	0.78	146 70	250	300	725	362.5	290	G	15.66	843
•.		1176	365T	120.0	60.0	48.0	93.0	93.0	92.0	0.84	0.81	0.72	221.56	250	300	725	362.5	290	G	25.75	1087
		3546	364TS	130.0	65.0	52.0	93.0	93.0	91.0	0.94	0.92	0.88	89.37	225	275	870	435	348	G	11.09	990
45	60	1776	364T	135.0	67.5	54.0	93.6	93.6	92.0	0.89	0.86	0.78	178.43	250	300	870	435	348	G	18.56	990
		1164	405T	142.5	71.3	57.0	93.6	93.0	91.0	0.85	0.81	0.73	272.24	200	250	870	435	348	G	28.5	1410
		3546	365TS	157.5	78.8	63.0	93.0	93.0	91.0	0.94	0.92	0.88	109.22	175	225	1085	542.5	434	G	16.55	1087
55	75	1770	365T	165.0	82.5	66.0	94.1	94.1	92.0	0.89	0.86	0.82	218.82	200	250	1085	542.5	434	G	20.46	1087
		1164	405T	175.0	87.5	70.0	93.6	93.0	91.0	0.84	0.80	0.72	332.74	200	250	1085	542.5	434	G	34.25	1410
		3546	405TS	215.0	107.5	86.0	93.6	93.0	91.0	0.94	0.92	0.88	148.94	150	200	1450	725	580	G	20	1410
75	100	1770	405T	232.5	116.3	93.0	94.5	94.1	92.0	0.86	0.82	0.74	298.39	200	250	1450	725	580	G	24.5	1410
		1170	444T	238	119	95	94.1	93.6	93	0.79	0.75	0.67	451.35	200	250	1450	725	580	G	14.12	2873
		3550	444T	266	133	106	94.5	94.1	93.5	0.88	0.84	0.76	184.46	150	200	1815	907.5	726	G	5.82	2873
93	125	1775	444T	266	133	106	94.5	94.1	93.5	0.88	0.84	0.76	368.91	175	225	1815	907.5	726	G	11.62	2873
		1170	447T	280	140	112	94.1	93.6	93	0.83	0.79	0.71	559.67	200	250	1815	907.5	726	G	17	3036
440	450	3550	445T	312	156	125	94.5	94.1	93.5	0.89	0.85	0.77	218.17	150	200	2170	1085	868	G	5.82	3036
110	150	1/75	445T	318	159	127	95	94.5	94	0.87	0.83	0.75	436.35	1/5	225	2170	1085	868	G	11.62	3036
		1170	44/1	340	1/0	136	95	94.5	94	0.81	0.77	0.69	007.54	200	250	2170	1085	868	G	18.98	3036
150	200	3550	44/1	424	212	170	95	94.5	94	0.89	0.85	0.77	297.51	150	200	2900	1450	1160	G	0.98	3036
		1113	44/1	432	210	1/3	90	94.0	94	0.07	0.05	0.75	J95.02	1/5	220	2900	1400	1100	G	13.90	3030

 $\ensuremath{\textcircled{}^{\circ}}$ 2008, Brook Crompton, All Rights Reserved All trademarks are the property of their respective owners.

	REVISIONS SYMBOL DESCRIPTION BATE & APPROVED
	PARTS LIST FIR W0330B113H1NS 33 110195 4 BODY FIT CAPSCREW-M8 32 140001 1 PIPE PLUG SOC. HEAD-1/8-27NPT 31 060116 2 O-RING, RING GEAR 30 240083 1 PLUNGER 29 240278 1 INPUT COUPLER 28 040170 1 MOUNTING FLANGE SHAFT 27 200034 1 RETAINING RING (REF#-1065R) 1 State 1
	26 140002 2 PIPE PLUG SOC. HEAD-1/4-18NPT 25 130101 4 WASHER-M6 24 130058 16 WASHER-M8 23 110194 12 CAP SCREW-M8 21 110104 4 CAP SCREW-M6 20 090054 1 SPACER 19 090053 2 SPACER 18 090052 1 SPACER
	17 060217 1 0-RING, CAP 16 060047 1 0-RING, PLUNGER 15 060048 1 PROTECTOR RING 14 060113 1 SEAL (REF#-CR25440) 13 050097 1 BEARING CONE (REF#-JLM506849) 12 050096 1 BEARING CUP (REF#-JLM506810) 11 050095 1 BEARING CONE (REF#-JM205149) 10 050094 1 BEARING CUP (REF#-JM205110) 9 180168 1 DRIVE SHAFT SUB ASSY
NOTES: 1) SEE OMNI DWG. 710212 FOR EXTERNAL DIMENSIONS	8 030451 1 RING GEAR 66T 7 030379 1 RING GEAR 73T 6 030383 1 SUN GEAR 17T 5 020218 1 LOCKOUT CAP 4 020217 1 PLUNGER CAP 3 020101 1 CAP 2 180153 1 CARRIER SUB ASSY 1 010159 1 HOUSING DET DART. NUMPER DTV DESCRUTION CARTARY
INDUC SECRET FORMULATION AND INCLUSE EXCLUSIVELY OWINE DRY OWNI USA, INC., 7502 MESA DRIVE, HOUSTON, TEXAS 77028. ANY COPYING, USE OR DISCLOSURE WITHOUT THE WRITERU PERMISSION OF OWNI USA, INC. IS STRICTLY PROHIBITED. THIS WATERIAL IS PROTECTED UNDER TRADE SECRET AND UNFAIR COMPETITION LAWS. THE EXPRESSION OF THE INFORMATION IS PROTECTED UNDER FEDERAL COPYRIGHT LAWS. VIOLATIONS MAY RESULT IN CIVIL AND CRIMINAL FINES AND PENALTIES.	Image: Control in the intervention of the interventintervention of the intervention of the intervention

R

Series 40 - M46 Variable Pumps

Service Manual

OVERVIEW	This manual includes information for the installation, maintenance, and minor repair of the Series 40 M46 pump. It includes a description of the unit and its individual components, troubleshooting information, and minor repair procedures.				
	Performing minor repairs requires the unit to be removed from the vehicle/machine. Thoroughly clean the unit before beginning maintenance, or repair activities. Since dirt and contamination are the greatest enemies of any type of hydraulic equipment, follow cleanliness requirements strictly. This is especially important when changing the system filter and when removing hoses or plumbing.				
	A worldwide network of Sauer-Danfoss Global Service Partners is available for major repairs. Sauer-Danfoss trains Global Service Partners and certifies their facilities on a regular basis. You can locate your nearest Global Service Partner using the distributor locator at www.sauer-danfoss.com.				
WARRANTY	Performing installation, maintenance, and minor repairs according to the procedures in this manual will not affect your warranty. Major repairs requiring the removal of a unit's front flange voids the warranty unless done by a Sauer-Danfoss Global Service Partner.				
GENERAL INSTRUCTIONS	Follow these general procedures when repairing Series 40 M46 variable displacement closed circuit pumps.				

A Remove the unit

Prior to performing repairs, remove the unit from the vehicle/machine. Chock the wheels on the vehicle or lock the mechanism to inhibit movement. Be aware that hydraulic fluid may be under high pressure and/or hot. Inspect the outside of the pump and fittings for damage. Cap hoses and plug ports after removal to prevent contamination.

📈 Keep it clean

Cleanliness is a primary means of assuring satisfactory pump life, on either new or repaired units. Clean the outside of the pump thoroughly before disassembly. Take care to avoid contamination of the system ports. Cleaning parts using a clean solvent wash and air drying is usually adequate.

As with any precision equipment, keep all parts free of foreign materials and chemicals. Protect all exposed sealing surfaces and open cavities from damage and foreign material. If left unattended, cover the pump with a protective layer of plastic.

Replace all O-rings and gaskets

Sauer-Danfoss reccommends you replace all O-rings, seals, and gaskets during repair. Lightly lubricate all O-rings with clean petroleum jelly prior to assembly.

SAFETY PRECAUTIONS

Always consider safety precautions before beginning a service procedure. Protect yourself and others from injury. Take the following general precautions whenever servicing a hydraulic system.

Unintended machine movement

A Warning

Unintended movement of the machine or mechanism may cause injury to the technician or bystanders. To protect against unintended movement, secure the machine or disable/ disconnect the mechanism while servicing.

Flammable cleaning solvents

A Warning

Some cleaning solvents are flammable. To avoid possible fire, do not use cleaning solvents in an area where a source of ignition may be present.

Fluid under pressure

A Warning

Escaping hydraulic fluid under pressure can have sufficient force to penetrate your skin causing serious injury and/or infection. This fluid may also be hot enough to cause burns. Use caution when dealing with hydraulic fluid under pressure. Relieve pressure in the system before removing hoses, fittings, gauges, or components. Never use your hand or any other body part to check for leaks in a pressurized line. Seek medical attention immediately if you are cut by hydraulic fluid.

Personal safety **A** Warning

Protect yourself from injury. Use proper safety equipment, including safety glasses, at all times.

Hazardous material

A Warning

Hydraulic fluid contains hazardous material. Avoid prolonged contact with hydraulic fluid. Always dispose of used hydraulic fluid according to state, and federal environmental regulations.

DESIGN

Sauer-Danfoss Series 40 M46 closed-circuit axial-piston pumps convert input torque into hydraulic power. The input shaft transmits rotational force to the cylinder block. Bearings at the front and rear of the pump support the input shaft. Splines connect the cylinder block to the input shaft. A lip-seal at the front end of the pump prevents leakage where the shaft exits the pump housing. The spinning cylinder block contains seven reciprocating pistons. A ball joint connects a brass slipper to each piston. A spring washer and the force of charge pressure holds the slippers to the swashplate. The reciprocating movement of the pistons occurs as the slippers slide against the inclined swashplate during rotation. Via the valve plate, one half of the cylinder block connects to low pressure and the other half to high pressure. As each piston cycles in and out of its bore, fluid displaces from inlet to outlet imparting hydraulic power into the system. A small amount of fluid flows from the cylinder block/valve plate and slipper/swashplate interfaces for lubrication and cooling. The pump also uses excess flow from the charge pressure relief valve for cooling. Case drain ports return this fluid to the reservoir. A gerotor-style charge pump provides this flow and maintains a minimum pressure in the system loop.

The angle of the swashplate controls the volume of fluid displaced into the system. The servo piston sets swashplate angle. The pump control modulates servo piston position by varying differential pressure across the piston.

Cross section view

Manual displacement Control

THE SYSTEM CIRCUIT

The basic closed circuit

Hydraulic lines connect the main ports of the pump to the main ports of the motor. Fluid flows in either direction from the pump to the motor and back in this closed circuit. Either of the hydraulic lines can be under high pressure. In pumping mode the angle of the pump swashplate determines which line is high pressure as well as the direction of fluid flow.

Case drain and heat exchanger

The pump and motor require case drain lines to remove hot fluid from the system. The pump and motor should be drained from their top most drain port to ensure the case remains full of fluid. Flow from the motor case drain may route to the lower drain port on the pump housing and out the top most port, or feed directly to the heat exchanger. The system requires a heat exchanger with a bypass valve to cool the case drain fluid before it returns to the reservoir.

System circuit diagram

PUMP SCHEMATIC

Pump schematic

Above schematic shows the function of a Series 40 M46 axial piston variable displacement pump.

Series 40 M46 Variable Pumps Service Manual Fluid and filter maintenance

FLUID AND FILTER RECOMMENDATIONS

To ensure optimum life, perform regular maintenance of the fluid and filter. Contaminated fluid is the main cause of unit failure. Take care to maintain fluid cleanliness when servicing.

Check the reservoir daily for proper fluid level, the presence of water, and rancid fluid odor. Fluid contaminated by water may appear cloudy or milky, or free water may settle in the bottom of the reservoir. Rancid odor indicates the fluid was exposed to excessive heat. Change the fluid immediately if these conditions occur. Correct the problem immediately. Inspect vehicle for leaks daily.

Change the fluid and filter per the vehicle/machine manufacturer's recommendations or at these intervals: We recommend first fluid change at 500 hours.

Fluid an	d filter c	hange	interval

Reservoir type	Max oil change interval				
Sealed	2000 hours				
Breather	500 hours				

Caution

High temperatures and pressures accelerate fluid aging. More frequent fluid changes may be required.

Change the fluid more frequently if it becomes contaminated with foreign matter (dirt, water, grease, etc.) or if the fluid is subjected to temperature levels greater than the recommended maximum.

Dispose of used hydraulic fluid properly. Never reuse hydraulic fluid.

Change filters whenever you change the fluid or when the filter indicator shows that it is necessary to change the filter. Replace all fluid lost during filter change.

Hazardous material

A Warning

Hydraulic fluid contains hazardous material. Avoid contact with hydraulic fluid. Always dispose of used hydraulic fluid according to state, and federal environmental regulations.

Series 40 M46 Variable Pumps Service Manual Initial startup procedures

GENERAL Follow this procedure when starting-up a new pump installation or when restarting an installation in which the pump was removed. Ensure pump is thoroughly tested on a test

A Warning

stand before installing.

Unintended movement of the machine or mechanism may cause injury to the technician or bystanders. To protect against unintended movement, secure the machine or disable/ disconnect the mechanism while servicing.

Prior to installing the pump, inspect for shipping damage.

START-UP PROCEDURE

- 1. Ensure the machine hydraulic oil and system components (reservoir, hoses, valves, fittings, and heat exchanger) are clean and free of any foreign material.
- 2. Install new system filter element(s) if necessary. Check that inlet line fittings are properly tightened and there are no air leaks.
- Install the pump. Install a 50 bar [1000 psi] gauge in the charge pressure gauge port M3.
- 4. Fill the housing by adding filtered oil in the upper case drain port. Replace plug.
- 5. Fill the reservoir with hydraulic fluid of the recommended type and viscosity. Use a 10-micron reservoir filler filter. Ensure inlet line from reservoir to pump is filled.
- 6. Disconnect the pump from all control input signals.

After start-up the oil level in the reservoir may drop due to filling of the system components. Check the level in the reservoir to maintain a full oil level throughout start-up.

A Warning

Damage to hydraulic components may occur if you fail to maintain the oil supply.

7. Use a common method to disable the engine to prevent it from starting. Crank the starter for several seconds. Do not to exceed the engine manufacturer's recommendation. Wait 30 seconds and then crank the engine a second time as stated above. This operation helps remove air from the system lines. Refill the reservoir to recommended full oil level.

Series 40 M46 Variable Pumps Service Manual Initial startup procedures

STARTUP PROCEDURE (continued)	8. Check the pressure gauge at M3. When charge pressure begins to build, enable and start engine. Let the engine run for a minimum of 30 seconds at low idle to allow the air to work itself out of the system. Check for leaks at all line connections and listen for cavitation. Check for proper fluid level in reservoir.						
	Caution						
	Air entrapment in oil under high pressure may damage hydraulic components. Do						

Air entrapment in oil under high pressure may damage hydraulic components. Do not run at maximum pressure until system is free of air and fluid has been thoroughly filtered.

- 9. When the pump establishes adequate charge pressure (as shown in model code), increase engine speed to normal operating rpm to further purge residual air from the system.
- 10. Shut off engine. Connect pump control signal. Start engine, checking to be certain pump remains in neutral. Run engine at normal operating speed and carefully check for forward and reverse control operation.
- 11. Continue to cycle between forward and reverse for at least five minutes to bleed all air and flush system contaminants out of loop.

Normal charge pressure fluctuation may occur during forward and reverse operation.

12. Check that the reservoir is full. Remove charge pressure gauge. Re-intall charge pressure plug. The pump is now ready for operation.

Series 90 Axial Piston Motors

Technical Information

SAUERSeries 90 Axial FistoriaDANFOSSTechnical Information Series 90 Axial Piston Motors General description

SERIES 90 FAMILY OF PUMPS AND MOTORS

Series 90 hydrostatic pumps and motors can be applied together or combined with other products in a system to transfer and control hydraulic power. They are intended for closed circuit applications.

Series 90 variable displacement pumps are compact, high power density units. All models utilize the parallel axial piston/slipper concept in conjunction with a tiltable swashplate to vary the pump's displacement. Reversing the angle of the swashplate reverses the flow of oil from the pump and thus reverses the direction of rotation of the motor output.

Series 90 pumps include an integral charge pump to provide system replenishing and cooling oil flow, as well as control fluid flow. They also feature a range of auxiliary mounting pads to accept auxiliary hydraulic pumps for use in complementary hydraulic systems. A complete family of control options is available to suit a variety of control systems (mechanical, hydraulic, electric).

Series 90 motors also use the parallel axial piston/slipper design in conjunction with a fixed or tiltable swashplate. They can intake/discharge fluid through either port; they are bidirectional. They also include an optional loop flushing feature that provides additional cooling and cleaning of fluid in the working loop.

- Series 90 advanced technology today •
- Seven sizes of variable displacement pumps
- Five sizes of fixed displacement motors
- One variable displacement motor
- SAE and cartridge mount configurations
- Efficient axial piston design
- Proven reliability and performance
- Compact, lightweight
- Worldwide sales and service

SAUER Series 90 Axial Piston r Technical Information Series 90 Axial Piston Motors General description

Series 90 Axial Piston Motors SAUER Series 90 Axial Piston I DANFOSS Technical Information **General description**

VARIABLE Cross section **DISPLACEMENT MOTOR**

Series 90 Axial Piston Motors Technical Information General description

DIAGRAM

SAUER Series 90 Axial Piston I Technical Information Series 90 Axial Piston Motors **General description**

PICTORIAL CIRCUIT This configuration shows a hydrostatic transmission using a Series 90 axial piston variable displacement pump and a Series 90 fixed displacement motor.

SYSTEM SCHEMATIC

Series 90 Axial Piston I Technical Information Series 90 Axial Piston Motors **Technical specifications**

OVERVIEW

Specifications for the Series 90 motors are listed here for quick reference. For definitions and additional information, see Operating Parameters, page 13, Features and Options, page 19, and the Series 90 Model Code Supplement.

FEATURES AND OPTIONS

Motor type In-line, axial piston, closed loop, positive displacement motors					
Direction of rotation	-directional, see outline drawings for rotation vs. flow direction information				
Installation position	Discretionary: Housing must be filled with hydraulic fluid				
Other system requirements	Independent braking system, overpressure protection, suitable reservoir, proper filtration				

Parameter	042 MF	055 MF	055 MV	075 MF	100 MF	130 MF
Types of mounting (SAE flange size per SAE J744)	SAE B	SAE C, cartridge	SAE C, cartridge	SAE C, cartridge	SAE C	SAE D
Port connections	Twin	Twin, axial	Twin	Twin, axial	Twin	Twin
Output shaft options	Spline	oline Spline, tapered, Spline Spli straight Spline		Spline, tapered, straight	Spline, tapered, straight	Spline
Control options	—	—	Two-position electro- hydraulic, hydraulic	—	—	—
Loop flushing						
Speed sensor						
Displacement limiters	—	_		—	—	—
Ctow dowd	Quetional					

Standard

Optional

Not available / not applicable

SPECIFICATIONS

Parameter		042 MF	055 MF	055 MV	075 MF	100 MF	130 MF
Swashplate		Fixed	Fixed	Variable	Fixed	Fixed	Fixed
Max. displacement cm ³ /rev [in ³ /rev]		42 [2.56]	55 [3.35]	55 [3.35]	75 [4.57]	100 [6.10]	130 [7.90]
Maximum corner power kW [hp]		155 [208]	8] 187 [251] 187 [251] 237 [318]		292 [392]	354 [475]	
Theoretical torque N•m/bar [lbf•in/1000 psi]		0.67 [410]	0.88 [530]	0.88 [530]	1.19 [730]	1.59 [970]	2.07 [1260]
Weight	SAE	15 [34]	22 [49]	39 [86]	26 [57]	34 [74]	45 [99]
kg [lb]	Cartridge	21 [46]	26 [57]	40 [88]	33 [72]	—	—
Mass moment of inertia kg•m² [slug•ft²]		0.0023 [0.0017]	0.0060 [0.0044]	0.0060 [0.0044]	0.0096 [0.0071]	0.0150 [0.0111]	0.0230 [0.0170]

OPERATING PARAMETERS

Parameter	Unit	042 MF	055 MF	055 MV	075 MF	100 MF	130 MF			
Speed limits										
Continuous (max. disp.)		4200	3900	3900	3600	3300	3100			
Maximum (max. disp.)	min-1(rnm)	4600	4250	4250	3950	3650	3400			
Continuous (min. disp.)	min (rpm)	—	—	4600	—	—	—			
Maximum (min. disp.)		—	—	5100	—	—	—			
System pressure										
Continuous	bar [nci]	420 [6000]								
Maximum	Dai [bzi]	480 [7000]								
Flow ratings										
Rated (max. disp., rated speed)	l/min [LIC gal/min]	176 [46]	215 [57]	215 [57]	270 [71]	330 [87]	403 [106]			
Maximum (max. disp., max. speed)	i/min [05 gai/min]	193 [51]	234 [62]	234 [62]	296 [78]	365 [96]	442 [117]			
Case pressure	Case pressure									
Continuous	bar [nci]			3 [44]					
Maximum (cold start)	Dai [þsi]			5 [73]					

FLUID SPECIFICATIONS

Viscosity mm ² /sec (cSt) [SUS]	
Minimum	7 [49]
Continuous	12-80 [70-370]
Maximum	1600 [7500]
Temperature °C [°F]	(measured at the hottest point in the system, usually the case drain)
Minimum	-40 [-40]
Continuous	104 [220]
Maximum	115 [240]
Filtration	
Cleanliness	22/18/13 or better per ISO 4406
Efficiency (suction filtration)	β ₃₅₋₄₅ =75 (β₁₀≥2)
Efficiency (charge filtration)	β ₁₅₋₂₀ =75 (β ₁₀ ≥10)
Recommended inlet screen size	100-125 μm [0.0039-0.0049 in]

Series 90 Axial Piston Motors Technical Information Technical specifications

EFFICIENCY GRAPHS

Motor performance as a function of operating speed

The following performance graph provides typical volumetric and overall efficiencies for Series 90 motors. These efficiencies apply for all frame sizes.

Efficiency vs. speed

Motor performance as a function of pressure and speed

The performance map provides typical motor overall efficiencies at various pressures and speeds. These efficiencies also apply for all frame sizes.

Efficiency plotted at various pressures and speeds

SE & LE SERIES SPIN-ON FILTER ELEMENTS

For Use With SF, DF, MF, MFT & ZDF Series Filter Heads

6.9"	SE-03	SE-10	SE-25	SE-100 100 Mesh Stn. Stl. Wire Cloth		
Part Number	SE-03	SE-10	SE-25	SE-100		
Diameter	5.1"	5.1"	5.1"	5.1"		
Mounting Thread	1 1/2" - 16	1 1/2" - 16	1 1/2" - 16	1 1/2" - 16		
Micron Rating	3 Micron	10 Micron	25 Micron	141 Micron		
Beta 2/20/75 (See Below)	3/10/22	9/22/24	29/46/54			
Filter Media Area	850 Sq. In.	950 Sq. In.	950 Sq. In.	200 Sq. In.		
Can Color / Imprint	White/Green	White/Red	White/Black	White/Blue		
		Agua Zarb		Agua Zarb		
Î		Aqua-ZOID		Aqua-2010		
 10.9"	LE-03	LE-03AZ	LE-10	LE-10AZ	LE-25	LE-100
		Water Absorbing		Water Absorbing		Stn. Stl. Wire Cloth
Part Number	LE-03	LE-03AZ	LE-10	LE-10AZ	LE-25	LE-100
Diameter	5.1"	5.1"	5.1"	5.1"	5.1"	5.1"
Mounting Thread	1 1/2" - 16	1 1/2" - 16	1 1/2" - 16	1 1/2" - 16	1 1/2" - 16	1 1/2" - 16
Micron Rating (Nominal)	3 Micron	3 Micron	10 Micron	10 Micron	25 Micron	141 Micron
Beta 2/20/75 (See Below)	3/10/22	5/21/23	10/22/33	8/25/30	29/46/54	
Filter Media Area	1170 Sq. In.	648 Sq. In.	1710 Sq. In.	648 Sq. In.	1710 Sq. In.	380 Sq. In.
Water Holding Capacity		15 oz.		15 oz.		
Can Color / Imprint	White/Green	White/Orange	White/Red	White/Orange	White/Black	White/Blue

Application Data:

- Reference: Beta_x Rating of 2 = 50% Efficiency (Nominal Rating) Beta_x Rating of 20 = 95% Efficiency Beta_y Rating of 75 = 98.7% Efficiency (Absolute Rating)
- Maximum Operating Pressure: 200 PSI All Models.
 Warning: 80 PSI ΔP max. without by-pass
- valve in filter head.
- Operating Temperature: -65 to +250° F.

- Application: Suitable for petroleum based fluids only. Consult factory for synthetic fluids.
- Buna "N" Gasket standard. Fluorocarbon Gasket optional, consult factory.
- Consult local distributor or factory for SE & LE Element interchange with those of other manufacturers.
 Caution: Do not use SE & LE Series filter
- elements on internal combustion engines.

SPIN-ON FILTERS

Phone (608) 524-4200 Fax (608) 524-4220 www.zinga.com

PRECISION INSTRUMENT COMPANY

MODEL '203L', LIQUID FILLED GAUGES

Our '200' Series Gauge Line Is A High Quality Line Of Liquid Filled Gauges. The Glycerine Filling Helps Dampen The Effects Of Pulsation And Vibration, While Also Perpetually Lubricating The Movement (And Keeping Contaminates Such As Dirt Away From All Moving Parts) Which Will Extend The Life Of The Gauge.

This Gauge Has Been Specifically Designed With The Original Equipment Manufacturers In Mind And Are Typically Used On Hydraulic & Pneumatic Systems As Well As Any Commercial Or Industrial Application Not Corrosive To Brass And Bronze Wetted Parts Where Glycerine Filling Is Suitable For Use.

SPECIFICATIONS:

- U-Clamp Panel Mount Design
- Available Dial Sizes: 1 1/2, 2", 2 1/2, 3 1/2, 4"
- Available Connection Sizes: 1/8"MNPT on 1 ½ and 2" 1/4"MNPT on 2", 2 ½ 3 ½ and 4"
- Stainless Steel Case And Bezel
- Brass Internals & Connection
- Phosphour Bronze Bourdon Tube
- Liquid Filled (Dry Available)
- Accuracy: Standard = 3-2-3 % Per ANSI grade B (Special Accuracy Available Upon Request)
- Dual Scale: PSI & Bar (x100=kPa) Single Scale available from stock
- Ambient temperature: FILLED: 30'F to 160'F

DRY: -30'F to 180'F

RANGE	CODE	Major In	Minor In
30/0"VAC	Α	5	0.5
30/0/15	СВ	5	0.5
30/0/30	CC	10	1
30/0/60	CD	10	1
30/0/100	CE	20	2
30/0/150	CF	20	2
30/0/300	СН	50	10
0/15	В	2	0.2
0/30	С	5	0.5
0/60	D	10	1
0/100	Е	20	2
0/160	F	20	2
0/200	G	40	5
0/300	Н	50	5
0/400	I	50	5
0/600	K	100	10
0/1000	М	200	20
0/1500	N	200	20
0/2000	0	400	50
0/3000	Р	500	50
0/5000	R	1000	100
0/10,000	U	1000	100
0/15,000	V	2000	200

		Α	В	С	D	Е	F	G
1 1/2	In	1.88	1.06	.89	1.95	1/8"	2.63	1.63
Dial	MM	48	27	23	50	Npt	67	42
2"	In	2.23	1.09	.71	1.99	1/8" or	2.81	2.00
Dial	MM	57	28	23	51	1⁄4"npt	72	51
2 ½	In	2.80	1.28	1.19	2.46	1/4"	3.48	2.50
Dial	MM	71	33	30	63	Npt	88	64
3 1/2	In	3.83	1.14	1.08	2.20	1/4"	3.70	3.5
Dial	MM	97	29	27	56	Npt	94	89
4"	In	4.32	1.63	1.14	2.77	1/4"	5.20	3.87
Dial	MM	110	42	29	71	Npt	132	98

Note: All Dial Size Gauges are Center Back Connection Except 3 ^{1/2} Dial Size which are Lower Back Connection

MCHXXX

Control Handle

BLN-95-8956-11

Issued: June 1995

DESCRIPTION

The MCHXXX Control Handle is intended for use in open loop systems or as a setpoint for analog or microprocessor closed loop systems for controlling position, speed, pressure, horsepower or other dynamic parameters.

The Control Handle is designed to provide remote electrical actuation of the MCV101 Pressure Control Pilot Valve or other pilots for pressure and flow control servovalves as well as directly controlling main spool valves. It may also be used to power the V7058 Hydrotransmission Valve for Sauer-Danfoss pumps/motors, or other electrically-actuated pump strokers such as the MCV104 Electrical Displacement Control.

FEATURES

- Shock and vibration resistant
- Choice of three mounting styles, with or without watertight case
- Rugged components designed for the construction environment
- High-torque handle actuation gives sure feel
- Simple to install
- Mechanical options include center-lock, spring-return, friction drag, uni/bi-directionality and Packard connector
- Electrical characteristics customized to the application

TECHNICAL DATA

ELECTRICAL

OPERATING VOLTAGE 11 - 15 Vdc (12 Volt models) 22 - 30 Vdc (24 Volt models)

POWER See Ordering Information

LOAD RESISTANCE Customer specified. See Ordering Information.

SWITCH CURRENT CAPABILITY 3 amps inductive at 28 Vdc.

MECHANICAL

HANDLE STROKE $\pm 30^{\circ} (\pm .52 \text{ radians})$

SPRING TORQUE

11 \pm 4 in-lbs. (1.2 \pm .4 N-m) at center breakaway 18 \pm 6 in-lbs. (2.0 \pm .7 N-m) at full stroke

DETENT TORQUE (OVER AND ABOVE FRICTION DRAG)

10 in - lbs. (1.1 N-m)

FRICTION DRAG

 13.5 ± 3 in-lbs. (1.5 \pm .3 N-m). Friction is adjusted at the brake with a 5/32 English Allen wrench and 3/8 open end wrench.

ORDERING INFORMATION

A wide range of options to the basic Control Handle allows it to be custom-tailored to each application. See the Ordering Specification Chart for assistance in determining Model Number. Other options are possible; consult Sauer-Danfoss with further questions.

- TOP MOUNT WITH CASE Connection is via two screws to an enlarged mounting plate. Top mounting allows the entire handle to be removed from above the panel. The case is made of black nylon plastic.
- 3. TOP MOUNT WITHOUT CASE Same as 2, but without case.
- BLN-95-8956-11

See the Dimensions diagram.

spring-preload indicating null.

The non-locking handle has a standard ball knob. The friction-held handle detents with a spring-loaded ball to

indicate null, while the spring-return handle has a

1. NON-LOCKING

ORDERING INFORMATION (continued)

II. <u>TYPE OF CONTROL KNOB</u> (continued)

- CENTER-LOCK The center-lock handle has a cylindrical knob and provides a positive center-lock that unlatches when the operator pulls up on the knob.
- 3. NON-LOCKING, AUXILIARY SWITCH This knob is teardrop shaped, with an auxiliary momentary push-button switch on top. The switch is wired through the handle shaft to the body with three wires (common, normally open and normally closed).
- 5. NON-LOCKING, NO KNOB The customer provides his own customized knob.
- THREE POSITION MAINTAINED ROCKER SWITCH IN KNOB
 The cylindrical knob has a boot covering the three position switch in the knob. The switch, wired through the handle, is used for auxiliary functions.
- THREE POSITION MOMENTARY ROCKER SWITCH IN KNOB This is the same as II.6, but the switch returns to the center position when released.

III. HANDLE ACTUATION

- A. SPRING-RETURN, BI-DIRECTIONAL This handle uses a torsion spring to return to the mechanical center position and has 30 degrees of handle throw on either side of center.
- B. FRICTION-HELD, BI-DIRECTIONAL This handle has an adjustable drag, set with a clamptype brake, that holds the handle at the set position and has 30 degrees of handle throw on either side of the center detent.
- C. FRICTION-HELD, UNI-DIRECTIONAL This handle has a high-resolution 60 degrees of handle throw, rotating on only one side of mechanical null, which is at full stroke. It has no detent mechanism.

IV. ELECTRICAL CHARACTERISTICS

 PROPORTIONAL, NO SWITCHES, 12 VOLT BI-PO-LAR
 This handle's output curve is fairly linear (see the Pro-

portional Control Handle diagram), with output voltages a function of handle stroke. The supply voltage is 12 volts, and there are no auxiliary function switches.

B. PROPORTIONAL, CENTER-OFF SWITCH, 12 VOLT, BI-POLAR

This handle has a center-off switch that ensures zero output voltage over \pm 3 degrees handle throw.

- C. PROPORTIONAL, CENTER-OFF SWITCH, 24 VOLT, BI-POLAR This handle runs on a supply voltage of 24 Volts.
- D. PROPORTIONAL, CENTER-OFF SWITCH, AUXIL-IARY SWITCH, 12 VOLT, BI-POLAR This handle has a second switch that actuates at + 2 or - 2 degrees.
- E. PROPORTIONAL, CENTER-OFF SWITCH, 12 VOLT, UNI-POLAR This handle maintains a single direction of current or voltage flow at all handle angles.
- F. STEP-PLUS-PROPORTIONAL, 12 VOLT, BI-POLAR This handle uses two switches to give the step-plusproportional output current on either side of null. This is used to overcome deadbands in spool valves. (See the Step Plus Proportional Control Handle diagram.) Current beyond this step output is proportional through the rest of the handle throw. Full current output at 30 degrees handle stroke is maximum of 250 ma. Step current is a maximum of 50% of full current output.
- G. STEP-PLUS-PROPORTIONAL, 24 VOLT, BI-POLAR Same as F, but 24 Volt.
- H. SWITCHING This handle is non-proportional. Moving the handle off null activates switches that power ON/OFF devices (e.g., solenoid valves).
- J. STEP-PLUS-PROPORTIONAL, FULL AUXILIARY SWITCHING, 12 VOLT, BI-POLAR This handle uses the step switches for additional secondary functions. Full current output at 30 degrees handle stroke is a maximum of 250 ma. Step current is a maximum of 50% of full current output.
- K. PROPORTIONAL, UNWIRED SWITCH The customer provides an auxiliary function, such as a neutral start interlock, with the unwired center switch.

L. STEP-PLUS-PROPORTIONAL, FULL AUXILIARY SWITCHING, 12 VOLT, BI-POLAR ELECTRONIC, PULSE WIDTH MODULATED This handle uses a printed circuit board that makes the step height and output current fully adjustable, accomodating high current applications. It also has pulse width modulation, which "dithers" the load to avoid stiction. Full current output at 30 degrees handle stroke is a maximum of 2 amps into a 5 ohm load. Step current is a maximum 50% of full current output. Typical dither frequencies (dependent on resistance of the load, specified in the suffix number) are: 60 Hz for the HPI solenoid actuator, approximately 400 Hz for the V7058 Hydrotransmission Valve and approximately 1000 Hz for the MCV101A Pressure Control Pilot Valve.

M. PROPORTIONAL, THREE SWITCHES The three switches are: a wired center switch, one unwired switch in forward and one unwired switch in reverse.

ORDERING INFORMATION (continued)

V. CONNECTOR

- TERMINAL STRIP Electrical connections are made to a set of four internal screw terminals.
- PIGTAIL WITHOUT CONNECTOR Four wires extend from the handle case. See Connection Diagram 2 for lengths.
- 3. PIGTAIL WITH CONNECTOR The wires from the case terminate in a Packard environmental connector. See Connection Diagram 2.
- 6. PIGTAIL WITH SEALED PACKARD CONNECTOR These are two separate connectors, each connected to a separate potentiometer.
- 7. PIGTAIL SEALED PACKARD CONNECTOR
- 8. PIGTAIL SEALED DEUTSCH CONNECTOR

VI. SUFFIX NUMBER

These final three numbers are factory-generated. To create the suffix number, the following information must be supplied: number of additional switches needed and actuation angle of each with respect to null, full current output, resistance of the driven load and step current needed (if necessary).

PERFORMANCE

NULL CURRENT

- \pm 5 ma maximum if not switched (12 Vdc models)
- \pm 8 ma maximum if not switched
- (24 Vdc models)

CENTER DEADZONE (OPTIONAL)

 $\pm\,3^\circ$ nominal

ENVIRONMENTAL

TEMPERATURE

- 40° to 170° F (- 40° to 77° C) operating

- 30° to 150° F (- 34° to 66° C) storage

HUMIDITY

After being placed in a controlled atmosphere of 95% humidity at 38° C (100° F) for 10 days, the Control Handle will perform within specification limits.

RAIN

After being showered from all directions by a high pressure hose down, the Control Handle will perform within specification limits (applied to cased models only). This test fulfills NEMA 4 specifications.

VIBRATION

Withstands a vibration test designed for mobile equipment controls consisting of two parts:

- 1. Cycling from 5 to 2000 Hz in each of the 3 axes.
- 2. Resonance dwell for one million cycles for each resonance point in each of the 3 axes.

WIRING

If no external cabling is ordered, access to power, ground and the potentiometer(s) is gained through a barrier terminal strip inside the handle's case. The customer should run a cable from the strip through the connector on the side or bottom of the case. See Connection Diagram 1. A clockwise handle movement causes a current flow from terminal B to A when the terminal strip is facing you.

A failure may cause an output which could activate the valve or pump. If this occurs, the apparatus may move, possibly endangering people or equipment. It is strongly recommended that handles be equipped with a neutral off switch to prevent this eventuality. For cases in which an active neutral is necessary, an emergency shut down and/or braking system sufficient to stop the system or vehicle immediately should be provided. FULL STROKE CURRENT CAPABILITY Customer specified. See Ordering Information.

STEP CURRENT

Customer specified. See Ordering Information. Step current occurs at end of deadzone.

SHOCK

50 g for 11 milliseconds. Three shocks in both directions of the 3 mutually perpendicular axes for a total of 18 shocks.

LIFE

Greater than 1,000,000 cycles excluding potentiometers. Potentiometers with greater than 1,000,000 cycles available for most applications.

DIMENSIONS

See the Dimensions diagram.

In most applications, auxiliary switches must be customerwired, as shown in Connection Diagram 1. When the switch is used as a center-off, power is connected from the external 12 Volt supply to the terminal labeled "common". The switch terminals are 3/16" quick-connect. Connection Diagram 2 shows a pre-wired Control Handle with center-off switch and Packard connector, exhibiting the handle phasing and color coding of the wires.

The Packard Connector Assembly diagram demonstrates how to assemble the mating Packard connector (male shell, female sockets) used in Connection Diagram 2. The necessary parts are shipped in a bag assembly (Part Number K03370) composed of six sockets and one plastic connector body.

The Potentiometer Locations diagram shows the location of the three trim potentiometers on the "L" handle. See the "Electrical Characteristics" section of the Ordering Information.

In order to avoid damaging the Control Handle, a 1 amp fuse wired in series is recommended for applications with low current-drawing requirements.

NORTH AMERICA

ORDER FROM

Sauer-Danfoss (US) Company Customer Service Department 3500 Annapolis Lane North Minneapolis, Minnesota 55447 Phone: (763) 509-2084 Fax: (763) 559-0108

DEVICE REPAIR

For devices in need of repair, include a description of the problem, a copy of the purchase order and your name, address and telephone number.

RETURN TO

Sauer-Danfoss (US) Company Return Goods Department 3500 Annapolis Lane North Minneapolis, Minnesota 55447

EUROPE

ORDER FROM

Sauer-Danfoss (Neumünster) GmbH & Co. Order Entry Department Krokamp 35 Postfach 2460 D-24531 Neumünster Germany Phone: 49-4321-8710 Fax: 49-4321-871355

Catalog HY15-3501/US Technical Information

In-Line Shuttle Valve Series ASH

General Description

In-Line Style Shuttle Valve. For additional information see Technical Tips on pages SH1-SH2.

Features

CV

Check Valves

SH

Shuttle Valves

LM

Load/Motor Controls

FC

Flow Controls

PC

Pressure Controls

LE

Logic Elements

DC

Directional Controls

MV

Manual Valves

SV

Solenoid Valves

PV

Proportional Valves

CE

Coils & Electronics

BC

Bodies & Cavities

TD

Technical Data

- Compact in size
- In-line mounting
- Easily adaptable to various applications
- All external parts zinc plated

Specifications

Rated Flow	ASH-04-3 11 LPM (3 GPM) ASH-06-2 22 LPM (6 GPM)		
Nominal Flow @ 7 Bar (100 PSI)	ASH-04-3 ?? LPM (?? GPM) ASH-06-2 ?? LPM (?? GPM)		
Maximum Inlet Pressure	207 Bar (3000 PSI)		
Leakage at 150 SSU (32 cSt)	5 drops/min. (.33 cc/min.) at 172 Bar (2500 PSI)		
Body Material	Steel (Chromate Plated)		
Operating Temp. Range/Seals	-40°C to +93.3°C (-40°F to +200°F) (Nitrile Seals Only)		
Fluid Compatibility/ Viscosity	Mineral-based or synthetic with lubricating properties at viscosities of 45 to 2000 SSU (6 to 420 cSt)		
Filtration	ISO code 16/13, SAE Class 4 or better		
Approx. Weight	ASH-04-3 .36 kg (0.8 lbs.) ASH-06-2 .45 kg (1.0 lbs.)		

Performance Curves

Flow vs. Pressure Drop (Through cartridge only)

Parker Hannifin Corporation Hydraulic Cartridge Systems

In-Line Shuttle Valve Series ASH

Parker Hannifin Corporation Hydraulic Cartridge Systems

Cartridge Valves Legacy Product Technical Information CP520-1

CP520-1

Schematic

OPERATION

This valve is a direct acting, 2 position, 3 way spool type solenoid.

0

32

Cross-sectional view

76

4.2

0

Limin 8

US galimin 2.1

Specifications		
Rated pressure	207 bar [3000 psi]	
Rated flow at 7 bar [100 psi]	27 l/min [7 US gəl/min]	
Leakage	82 cm³/min (5 in³/min) @ Rated pressure	
Weight	0.49 kg [1.08 lb]	
Cavity	CP10-3	
Coil	D10 16 watt	

Ð

mm [in]

72.6

46.2 [1.82]

P102 275E

CP520-1-B-65-24D-S -MSeals Manual override Seal kit Omit = No override M = Manual override B = Buna-NV = Viton 120009 120010 Body and ports Body P/N 0 = Cartridge 65 = Alumin um. #6 SAE No body CP10-3-65 Voltage 10D = 10 VDC 12D = 12 VDC 20D = 20 VDC 24D = 24 VDC 120A = 120 VAC C 85 = Aluminum #8 SAE CP10-3-85 240A =240 VAC

40

10.6 P102 306E

32

8.5

Flow -

6.3

ORDERING INFORMATION

Contact Sequence Selection Table / Tabla de selección de las secuencias de contactos / Tableau de séquence de contact

Contact Block Locatio	tact Block Location / Ubicación de los bloques de			N	on-Illur	ninated	I Opera	tor, Typ	e: / Ope	rador n	o lumino	oso, tipo	o: / Oper	ateurs n	on lumi	neux, ty	pe:
contactos / Emplacem	ent des blocs à	contacts	C	KS11	KS12	KS25	KS34	KS42	KS43	KS44	KS45	KS46	KS47	KS49	KS401	KS402	KS88
	B1 िøि	± ≣Ω¶∃β2	N							Cam /	Leva / C	ame					
Block B	Block A	Block B Bloque B	Å	E	D	E	D	В	С	D	E	F	G*	J	L*	М	H*
	Bloc A Bloc A A1	Ť (0)		Knob Position / Posición de la perilla / Position du bouton													
	`š′	丶 /	丶 /	ヽ ↗	丶 /	NZ		NZ	NZ	NZ	NZ	NZ	NZ	N17	11/2		
Block A Only Bloque A solamente Bloc A seulement		A1 <u>010</u> A2 0 0	A1 A2	X O O X	0 X X 0	X O O X	0 X X 0	X 0 0 0 X X	X 0 0 0 0 X	00X 0X0	X 0 0 0 X 0	X 0 0 0 0 X	X 0 0 0 X X	X 0 0 0 X X	0 X O X O O	x x o o o x	X000 00X0
Block B Only Bloque B solamente Bloc B seulement	B1 <u>010</u> B2 0 0		B1 B2	X O O X	0 X X 0	X 0 0 X	0 X X 0	00X XX0	X 0 0 0 0 X	00X 0X0	X 0 0 0 X 0	0 X O 0 O X	00X X00	xox oxo	00X 0X0	0 X X X 0 0	8000X
Block A and B Bloques A y B Blocs A et B Blocs A et B			A1 A2 B1 B2	X O X O X O X O X O	0 X X O X O X O	X 0 X 0 X 0 X 0 X 0	0 X X O X O X O	X 0 0 0 X X 0 0 X X X 0	X 0 0 0 0 X X 0 0 0 0 X	00X 0X0 00X 0X0	X00 0X0 X00 0X0	X 0 0 0 0 X 0 X 0 0 0 X	X00 0XX 00X X00	X 0 0 0 X X X 0 X 0 X 0	0 X 0 X 0 0 0 0 X 0 X 0	XX0 00X 0XX X00	X000 00X0 000X 0X00
lote: Contacts Closed = X; Open = O				: Cont	actos	Cerrad	los = J	X; Abie	rtos = 0	5	Remarque : Contacts Fermés = X; Ouverts = O						
An intermediate contact state can exist while changing the switch position.			* Es int	* Es posible que el contacto se encuentre en un estado intermedio al cambiar la posición del interruptor.						 C'est possible que un état de contact intermédiaire peut exister en changeant la position de l'interrupteur. 							

REEMPLAZO DE LA LEVA 0 (canales para

nsertada en la muesca posicionadora no. A1.

REEMPLAZO DE LA LEVA 🕲 (canales para

Nota: La posición de la perilla de la extre

posicionadora no. A2.

conductores laterales) 1. Haga girar la perilla a la posición del interruptor mostrada en X, Y y Z según sea

conductores en las partes superior e inferior) Siga los

pasos descritos en 1 y 2, y fije la leva en la muesca

izquierda es la posición no. 1 para el tipo KS25.

necesario. 2. Fije la leva en su posición con la llave

CAM REPLACEMENT () (wire channels on side) 1. Rotate the knob to the switch position shown in **X**, **Y**, and **Z** as required. 2. Snap the cam into position with the cam key inserted into keyway A1.

CAM REPLACEMENT @ (wire channels on souther termines of the second state of the se

Electrical equipment should be serviced only by

qualified electrical maintenance personnel. No

responsibility is assumed by Square D for any consequences arising out of the use of this

position #1 for Type KS25.

material.

2

Square D

8001 Hwy 64 East Knightdale, NC 27545 USA

1-888-Square D (778-2733)

www.squared.com

2 Position, spring return to right 2 or 4 Position, maintained Retorno por resorte hacia la derecha, 2 posiciones

SQUARE D

Sostenido, 2 o 4 posiciones

Rappel par ressort vers la droite, 2 positions Maintenu, 2 ou 4 positions

Retorno por resorte hacia la izquierda, 2 posiciones Rappel par ressort vers la gauche, 2 positions

Solamente el personal de mantenimiento eléctrico especializado deberá prestar servicios de mantenimiento al equipo eléctrico. La Compañía no asume responsabilidad alguna por las consecuencias emergentes de la utilización de este material. Importado en México por: Schneider Electric México, S.A. de C.V. Calz, J. Rojo Gómez 1121-A, Col. Gpe. del Moral

09300 México, D.F. Tel. 5804-5000 www.schneider-electric.com.mx

Telemecanique

2 Position, spring return to left

3 positions

L'entretien du matériel électrique ne doit être effectué que par du personnel gualifié. La Société n'assume aucune responsabilité des conséquences éventuelles découlant de l'utilisation de ce matériel Schneider Canada Inc. 19 Waterman Avenue, M4B 1 Y2 Toronto, Ontario (416) 752-8020 www.schneider.ca

REMPLACEMENT DE LA CAME (caniveaux de fil

sur le côté) 1. Tourner le bouton sur la position d'interrupteur indiquée sur X, Y, et Z selon les besoins

2. Encliqueter la came en position, avec la clé de came

REMPLACEMENT DE LA CAME @ (caniveaux de fil en

Remarque : La position du bouton qui est le plus à

))C z

haut et en bas) Suivre les étapes 1 et 2 ci-dessus et

mettre en place la came avec un déclic dans la

gauche est le n° 1 pour le type KS25.

insérée dans la cannelure nº A1.

© 1997–2000 Schneider Electric All Rights Reserved / Reservados todos los derechos / Tous droits réservés

2/00

3 Position, maintained or spring return Sostenido o retorno por resorte, 3 posiciones Maintenu ou rappel par ressort,

. cannelure nº A2.

Series CA7 Contactors

Contactors

Rugged, space saving and modular... Sprecher + Schuh's newest contactor for applications up to 60HP

UL,

Ð

CE

Over 95 years of design experience has produced Sprecher + Schuh's seventh generation contactor line. The CA7 represents the most modern and flexible IEC power contactor available today, meeting the highest industrial application requirements.

Big performance in a small package

A wide selection of ten contactors in four frame sizes covers the entire CA7 horsepower range (up to 60HP @ 460/575V). Six of the contactors are only 45mm wide, an extremely small footprint for such rugged performance. A number of design features account for this efficiency, including high contact pressure and "bouncefree" contacts, allowing the devices to handle the high starting currents typical of modern motors.

Type 1 and Type 2 Coordination

Whether you're designing motor circuits for use in North America, Europe or any other part of the world, all CA7 contactors have been designed and tested with respect to Type 1 and Type 2 short circuit coordination. Find out more in the CA7 Technical Information section in this chapter.

Advanced safety and reliability features

The entire CA7 line features mechanically linked contacts, such that if a main power pole welds, adequate clearances exist (≥ 0.3 mm) to ensure that the auxiliary contacts do not change state when coil power is removed and the device tries to open. This is a requirement in safety circuits.

Reliability is further assured by "crossstamped" auxiliary contacts, which provide multi-point reliability in low current, low voltage applications.

Two types of DC coils available

CA7-9C through 43C contactors are available with true DC coils that dramatically decrease wattage consumption during pull-in. This allows the use of smaller power supplies. The entire CA7 line is also available with a two winding DC coil that reduces the size of the contactor, as well as the hold-in values. Two winding coils include built-in coil suppression and an internal contact that bypasses the pull-in coil to the hold-in coil.

Modular accessories are common to all devices

All accessories are interchangeable among all CA7 contactors and CS7 control relays. This minimizes inventory requirements and maximizes flexibility. Top and side mount auxiliary contacts are available depending on your application. A mechanical interlock with two built-in NC auxiliaries also provides electrical interlocking if desired. Pneumatic and electronic timers, surge suppressors and electronic interface modules provide solutions for even the most complex applications.

Reversible coil provides total flexibility

When shipped, both coil connections are normally located at the top of the contactor in preparation for mounting an overload relay at the bottom. For multi-starter panels, however, the coil can be reversed, which provides space to close-couple a KT7 Motor Circuit Controller on the top of the contactor. CA7 contactors can either be ordered with the coil reversed or may be easily reversed in the field.

Dual power terminals speed wiring

CA7-30 through 85 contactors are designed with two power terminals for all three poles. This simplifies power wiring of interconnected contactors in reversing, reduced voltage and twospeed applications. Preformed power wiring connectors are also available for virtually instantaneous wiring in these labor intensive applications. Simplified wiring means less labor and less cost.

Sprecher + Schuh's expanded CA7 line includes contactors designed and labeled for specific industrial applications

Reversible coils are standard on all CA7 contactors

Dual power terminals assure hassle-free wiring in complex control schemes

Capacitor contactors

CAQ7 contactors overcome the complicated design issues inherant with capacitor switching by incorporating a built-in set of resistors and early-make contacts, wired in parallel with the power contacts, to pre-charge the capacitors. This manages the peak inrush common with capacitor switching. This circuitry is housed in a front mounted add-on deck that results in a compact design and ease of selection based on applied KVAR.

Special purpose contactors

CNX contactors are standard CA7 contactors that have been tested, approved and labeled by UL for heating ventilation and air conditioning (HVAC) applications.

Special use contactors for specialized applications

The CA7 line has been expanded to include a number of contactors designed and labeled for specific industrial applications. In all cases, these devices are UL and CSA approved for these specialized uses.

Lighting contactors

The CAL7 contactor can be used to control a wide variety of lighting loads. These contactors are well suited to handle the high inrush currents typical of this application as well as other non-motor (resistive) loads. Both mechanically held and electrically held models are available for applications up to 20A for lighting and 30A for resistive loads.

Contactors - AC Coil Three Pole - Series CA7

	i		
	Contactors	CUILLACIUIS	

Non-Reversing, Three Pole Contactors With AC Coil, Series CA7 (Open type only) ①

			Ratings for Switching AC Motors (AC2 / AC3 / AC4)									Auxi	liarv	Open Type	
I I e	[A]		kW (!	50 Hz)			UL	/CSA H	IP (60	Hz)		Conta	cts per		
	D		415V/			1	Ø		3	Ø		Cont	actor	Catalog	
AC-3	AC-1	230V	400V	500V	690V	115V	230V	200V	230V	460V	575V	NO	NC	Number	Price
0	22	2	4	4	4	1/2	1	2	2	F	7 1/2	1	0	CA7-9-10- *	70
9	32	3	4	4	4	1/3		²	2	5	1-1/2	0	1	CA7-9-01- *	12
12	22	4	55	55	55	1/2	2	2	2	7 1/2	10	1	0	CA7-12-10- *	0/
12	52	4	5.5	5.5	0.0	1/2	2		3	1-1/2	10	0	1	CA7-12-01- *	74
16	32	55	75	7.5	7.5	1	2	5	5	10	15	1	0	CA7-16-10- *	105
10	JZ	5.5	7.5	1.5	1.5		5	5	J	10	15	0	1	CA7-16-01- *	105
22	32	75	11	11	10	2	2	5	7-1/2	15	15	1	0	CA7-23-10-*	116
23	JZ	1.5			10	2	5	5	7-1/2	15	15	0	1	CA7-23-01- *	110
												0	0	CA7-30-00- *	133
30	65	10	15	15	15	2	5	7-1/2	10	20	25	1	0	CA7-30-10- *	145
												0	1	CA7-30-01-*	145
			10 5 /									0	0	CA7-37-00- *	158
37	65	11	20	20	18.5	3	5	10	10	25	30	1	0	CA7-37-10- *	170
			20									0	1	CA7-37-01-*	170
												0	0	CA7-43-00- *	170
43	85	13	22	22	22	3	7-1/2	10	15	30	30	1	0	CA7-43-10- *	182
												0	1	CA7-43-01-*	182
												0	0	CA7-60-00-*	204
60	100	18.5	30	30	30	5	10	15	20	40	50	1	0	CA7-60-10-*	216
												0	1	CA7-60-01-*	216
												0	0	CA7-72-00- *	238
72	100	22	37	37	37	5	15	20	25	50	60	1	0	CA7-72-10- *	249
												0	1	CA7-72-01- *	249
												0	0	CA7-85-00- *	273
85	100	25	45	45	45	7-1/2	15	25	30	60	60	1	0	CA7-85-10- *	284
												0	1	CA7-85-01-*	284

CA7-9-10-120 contactor

CA7-43-00-120 contactor

CA7-85-00-120 contactor

Coil Codes @

A.C.	Voltage	Range
Coil Code	50 Hz	60 Hz
24Z	24V	24V
120	110V	120V
208	~	208V
220W	~	208V-240V
240	220V	240V
277	240V	277V
380	380V-400V	440V
480	440V	480V
600	550V	600V

Coil Terminal Position

All CA7 contactors are stocked and delivered with the coil terminals located on the line side (top) of the contactor. This is the typical configuration when using the contactor with an overload relay. When the contactor is used with the KT7 Motor Circuit Controller, the coil must be reversed, so that the coil terminals are located at the load side (bottom) of the contactor. CA7 coils can easily be reversed in the field, however, they are also available for order with the coils reversed from the factory. Contact your Sprecher+Schuh representative for more information about ordering CA7 contactors with reversed coils.

All CA7 contactors come with reversible coils.

Ordering Instructions

Specify Catalog Number

• Replace (*) With Coil Code

See Coil Code table on this page for codes • AC1 Resistive Ratings and UL/CSA Continuous Current Ratings may be increased by the use of Lug Kits or Paralleling Links. See CA7 Accessories section for applicable information.

Other voltages available, see page A37. Non-standard coil voltages not listed here must be ordered and installed separately as renewal parts.

Contactors - AC Coil

Four Pole - Series CA7

Contactors

CA7

CA7-23-M22-120 contactor

Non-Reversing, Four Pole Contactors With AC Coil, Series CA7 (Open type only)

ĺ			Rating	s for S	Switch	ing AC	g AC Motors (AC2 / AC3 / AC4)					Con	tact	Open Type	
I Ie	[A]		kW (5	50 Hz)			UL	/CSA H	IP (60	Hz)		Config	uration,	opon Jpo	
			415V			1	Ø		3	Ø		Main Pole		Catalog	
AC-3	AC-1	230V	400V	500V	690V	115V	230V	200V	230V	460V	575V	NO	NC	Number	Price
												4	0	CA7-9-M40- *	72
9	32	3	4	4	4	1/3	1	2	2	5	7-1/2	3	1	CA7-9-M31- *	80
												2	2	CA7-9-M22- *	80
												4	0	CA7-12-M40- *	94
12	32	4	5.5	5.5	5.5	1/2	2	3	3	7-1/2	10	3	1	CA7-12-M31- *	100
												2	2	CA7-12-M22- *	100
												4	0	CA7-16-M40- *	105
16	32	5.5	7.5	7.5	7.5	1	3	5	5	10	15	3	1	CA7-16-M31- *	111
												2	2	CA7-16-M22- *	111
												4	0	CA7-23-M40- *	116
23	32	7.5	11	11	11	2	3	5	7-1/2	15	15	3	1	CA7-23-M31- *	124
												2	2	CA7-23-M22-*	124
	<i>I</i> e AC-3 9 12 16 23	Ie [A] AC-3 AC-1 9 32 12 32 16 32 23 32	Image: Height of the state of the	Rating I_e [A] KW (\$ AC-3 AC-1 230V 40VV 9 32 3 4 12 32 4 5.5 16 32 5.5 7.5 23 32 7.5 11	Ratings for S I_e [A] Ratings for S KW (50 Hz) AC-3 AC-1 230V 415V 400V 500V 9 32 33 4 4 12 32 4 5.5 5.5 16 32 5.5 7.5 7.5 23 32 7.5 11 11	Ratings for Switching Image: Particular system Ratings for Switching Image: Particular system Ratings for Switching AC-3 AC-1 230V 415V 400V 500V 690V AC-3 AC-1 230V 400V 500V 690V 690V 9 32 33 4 4 4 12 32 4 5.5 5.5 5.5 16 32 5.5 7.5 7.5 7.5 23 32 7.5 11 11 11	Ratings for Switching AC Ratings for Switching AC I_e $IIE IIE IIE $	Ratings for Switching AC Motion Ratings for Switching AC Motion I_e [A] Image: Second Colspan="4">Image: Second Colspan="4" I_e [A] I_{100}	Ratings for Switching AC Motors (AC2 Ratings for Switching AC Motors (AC2 I_e [A] Image: Image	Ratings for Switching AC Motors (AC2 / AC3 Image: Ratings for Switching AC Motors (AC2 / AC3 Image: Im	Ratings for Switching AC Motors (AC2 / AC3 / AC4 Image: Ratings for Switching AC Motors (AC2 / AC3 / AC4 I_{e} I_{W} $UL/CSA HP$ (60 Hz) AC-3 AC-1 230V 400V 500V 690V 115V 230V 200V 230V 460V 9 32 33 4 4 4 1/3 1 2 2 5 12 32 3 4 5.5 5.5 1/2 2 3 3 7-1/2 16 32 5.5 7.5 7.5 7.5 1 3 5 5 10 23 32 7.5 11 11 2 3 5 7.1/2 15	Ratings for Switching AC Motors (AC2 / AC3 / AC4) Image for Switching AC Motors (AC2 / AC3 / AC4) UL/CSA HP (60 Hz) AC-3 AC-1 230V 400V 500V 690V 115V 230V 200V 230V 460V 575V 9 32 33 4 4 1/3 1 2 2 5 7-1/2 10 32 33 4 5.5 5.5 1/2 2 3 3 7-1/2 10 11 32 5.5 7.5 5.5 1 2 3 3 7-1/2 10 12 32 5.5 7.5 7.5 1 3 5 5 10 15 16 32 5.5 7.5 7.5 1 3 5 5 10 15 23 32 7.5 11 11 2 3 5 7-1/2 15 15	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c } & \mathbf{Ratings for Switching AC Motors (AC2 / AC3 / AC4)} & Contaction (Action (Ac$	Ratings for Switching AC Motors (AC2 / AC3 / AC4) Contact Contage and the set of th

	j.	
Coil Code	50 Hz	60 Hz
24Z	24V	24V
120	110V	120V
208	~	208V
220W	~	208V-240V
240	220V	240V
277	240V	277V
380	380V-400V	440V
480	440V	480V
600	550V	600V

٦

Ordering Instructions

- Specify Catalog Number
- Replace (*) With Coil Code

See Coil Code table on this page for codes

• Other voltages available, see page A37. Non-standard coil voltages not listed here must be ordered and installed separately as renewal parts.

Series CEP7 Solid State Overload Relays

Advanced solid state motor protection at electromechanical prices

Motor Protection

CEP7

	Us	e O v	erloa	id Re	lay F	amil	y
		CEP7	CT7	СТ7К	CT4	CEF1	CET4
or	CA7	~	~	~			
tacto	CA6	~				~	~
Con	CA5						~
For	CA4	~			~		

UL.

Ð

CE

Described in this section

Sprecher + Schuh is at the leading edge of technology developing affordable solid state overload relays that utilize the latest Application Specific Integrated Circuits (ASICs) in their construction. This gives our new CEP7 overload relay many features that are simply not possible with traditional bimetallic or eutectic alloy electromechanical overload relays.

Increased accuracy and improved motor protection

Unlike traditional overload relays that simulate heat build-up in the motor by passing current through a heater element, CEP7 solid state overload relays measure motor current *directly* through integrated current transformers. The transformers, in turn, create a magnetic field that induces DC voltage onto the ASIC board. The electronics identify excessive current or

Microelectronics provide flexible and accurate motor overload protection

loss of phase more accurately, and react to the condition with greater speed and reliability, than traditional overload relays. In addition, CEP7 solid state relays offer setting accuracies from 2.5 - 5%and repeat accuracy of 1%.

Self-powered design means convenience

By developing the power it requires from the applied voltage, the CEP7 is "self-powered," eliminating the need for a separate control power source. This is not the case with traditional overloads and some other competitive electronic overload relays. Since the CEP7 is self-powered and a typical auxiliary contact is used to interface with the contactor, the user can apply the CEP7 the same way as an electromechanical overload. No special connections or control schematic diagram provisions are required in 3phase applications.

Superior phase failure protection

The CEP7's on-board electronics are constantly monitoring all three phases. If the ASIC board senses that one phase is missing during a steady state running condition on a 100% loaded motor, it will trigger in 2 seconds; and from 2 - 3seconds on a lightly loaded motor. If the single phase condition is present during starting, the CEP7 will trip within 8 seconds (for a motor >80% loaded). These times are much faster than any electromechanical overload relay. In addition, CEP7 overload relays detect a 50% phase imbalance in the same way as a phase loss.

B2

Choice of tripping classes...

Because of today's lighter T-frame motors, Class 10 overload relays (relays that trip within 10 seconds of a locked rotor condition) have become the industry standard. If your application requires a longer motor run-up time, Class 15 and 20 versions of the CEP7 are also available in all amp ranges.

CEP7 overload relays are available with Class 10, 15 or 20 tripping characteristics

Choice of reset options

Most industrial applications usually call for an overload relay that must be manually reset in the event of a trip. This allows the cause of the overload to be identified before the motor is restarted. In specialized cases,

however, such as rooftop AC units or where restarting the motor will not harm people or equipment, automatic reset may be desired. CEP7 overload relays are available with either Manual Reset exclusively, or Manual and Automatic Reset models which can be toggled to the desired mode.

Dramatically reduced energy requirement saves money and reduces panel space

Because traditional overload relays work on the principle of "modeling" the heat generated in the motor (recreating the heat in the bimetal elements or heaters), a significant amount of energy is wasted. In traditional overload relays, as many as six watts of heat are dissipated to perform the protective function.

Because the CEP7 uses sampling techniques to actually measure the current flowing in the circuit, very little heat is dissipated in the device...as little as 150 milliwatts. This not only reduces the total amount of electrical energy consumed in an application, but it can also have a dramatic impact on the design and layout of control panels. The density of motor starters can be much greater because less heat is generated by each of the individual components. Higher density results in smaller control panels. In addition, special ventilation or air conditioning that might have been required to protect sensitive electronic equipment such as PLC's can now be reduced or eliminated.

Conventional overload relays dissipate as much as six watts of energy compared with as little as 150 milliwatts for the CEP7

Wide current adjustment range

Bi-metallic overload relays typically have a small curent adjustment range of 1.5 to 1, meaning that the maximum setting is generally 1.5 times the lower setting. CEP7 relays, on the other hand, have an adjustment setting of 3.2 to 1. This reduces relay stocks over 50% and helps assure the correct relay is always on hand.

Ground fault and jam protection also available

Our new CEP7-B solid state overload relay is the **ultimate motor protection relay** in this price class. DIP-switches provide Trip Class selection of 10, 15, 20 or 30 seconds. This ability allows you to closely match the Trip Class with the run-up time of the motor. Ground Fault and Jam Protection are also included. Ground Fault protection trips at 50% of FLA setting, while Jam / Stall Protection trips at 400% of FLA (after inrush).

Type CEP7 – Directly Mounted

J		j				
	Directly Mounts	Adustment	Trip Class 10	0	Trip Class 20)
Overload Relay	to Contactor @	Range (A)	Catalog Number	Price	Catalog Number	Price
	Manual	Reset for 3Ø A	pplications 0			
		0.10.32	CEP7-M32-0.32-10	51	CEP7-M32-0.32-20	51
		0.321.0	CEP7-M32-1.0-10	51	CEP7-M32-1.0-20	51
1.4.1	CA4-9CA7-23	1.02.9	CEP7-M32-2.9-10	51	CEP7-M32-2.9-20	51
	8	1.6 5.0	CEP7-M32-5-10	51	CEP7-M32-5-20	51
S. A. A. A.		3.712	CEP7-M32-12-10	51	CEP7-M32-12-20	51
L'ALE TO DE	-	1232	CEP7-M32-32-10	55	CEP7-M32-32-20	55
8	CA7-30 37	3.712	CEP7-M37-12-10	51	CEP7-M37-12-20	51
030	0A7 3037	1237	CEP7-M37-37-10	76	CEP7-M37-37-20	76
	CA7-43	1445	CEP7-M45-45-10	110	CEP7-M45-45-20	110
CEP7-M32	CA7-6085	2685	CEP7-M85-85-10	125	CEP7-M85-85-20	125
	Manual	Reset for 1Ø A	pplications 0			
7 I.I.		2.07.0	CEP7S-M32-7-10	51	CEP7S-M32-7-20	51
1	CA4-9CA7-23	5.015	CEP7S-M32-15-10	51	CEP7S-M32-15-20	51
111	ß	1232	CEP7S-M32-32-10	55	CEP7S-M32-32-20	55
The state	CA7-30 37	515	CEP7S-M37-15-10	51	CEP7S-M37-15-20	51
61-0	0.11 0007	1237	CEP7S-M37-37-10	76	CEP7S-M37-37-20	76
0.0.03	CA7-43	1445	CEP7S-M45-45-10	110	CEP7S-M45-45-20	110
CEP7S-M32	CA7-6085	2685	CEP7S-M85-85-10	125	CEP7S-M85-85-20	125

Directly Mounted CEP7 Solid State Overload Relays, Manual Reset 020

Directly Mounted CEP7 Solid State Overload Relays, Automatic/Manual Reset 0200

	Directly Mounts	Adustment	Trip Class 10)	Trip Class 20)
Overload Relay	to Contactor @	Range (A)	Catalog Number	Price	Catalog Number	Price
	Automatic or M	anual Reset for	3Ø Applications	14		
		0.10.32	CEP7-A32-0.32-10	54	CEP7-A32-0.32-20	54
		0.321.0	CEP7-A32-1.0-10	54	CEP7-A32-1.0-20	54
	CA4-9CA7-23	1.02.9	CEP7-A32-2.9-10	54	CEP7-A32-2.9-20	54
	0	1.65.0	CEP7-A32-5-10	54	CEP7-A32-5-20	54
Bar Star		3.712	CEP7-A32-12-10	54	CEP7-A32-12-20	54
61-1-2	-	1232	CEP7-A32-32-10	58	CEP7-A32-32-20	58
. 3	CA7-30 37	3.712	CEP7-A37-12-10	54	CEP7-A37-12-20	54
	047 0007	1237	CEP7-A37-37-10	81	CEP7-A37-37-20	81
	CA7-43	1445	CEP7-A45-45-10	115	CEP7-A45-45-20	115
	CA7-60 85	1445	CEP7-A85-45-10	125	CEP7-A85-45-20	125
CEP7-A45	047 0000	2685	CEP7-A85-85-10	130	CEP7-A85-85-20	130
	Automatic or M	anual Reset for	1Ø Applications	14		
		2.07.0	CEP7S-A32-7-10	54	CEP7S-A32-7-20	54
141	CA4-9CA7-23	5.015	CEP7S-A32-15-10	54	CEP7S-A32-15-20	54
in the	8	1232	CEP7S-A32-32-10	54	CEP7S-A32-32-20	54
Carl and	CA7-30 37	515	CEP7S-A37-15-10	54	CEP7S-A37-15-20	54
0		1237	CEP7S-A37-37-10	81	CEP7S-A37-37-20	81
0	CA7-43	1445	CEP7S-A45-45-10	115	CEP7S-A45-45-20	115
CEP7S-A45	CA7-6085	2685	CEP7S-A85-85-10	130	CEP7S-A85-85-20	130

cations usually call for an overload relay that must be manually reset in the event of a trip. This allows the cause of the overload to be identified before the motor is restarted. An overload relay that resets automatically is generally for specialized, or remote applications, such as rooftop AC units where restarting the motor will not harm people or equipment.

Most industrial appli-

- \bullet 3-phase CEP7 units are only designed for 30 applications. Single phase CEP7S units are only designed for 10 applications.
- Contactors noted will physically attach to the overload relays listed. This reference is not intended to be a guide for selecting contactors. Size overload relays using the full load current of the motor.
- CEP7 overload relays are shipped with a CA4 wiring adaptor (labeled "A") in the box which replaces the CA7 wiring adaptor (labeled "B") that is installed on the overload as standard.
- The reset time of a CEP7 set in the automatic mode is approximately 180 seconds.
- G CEP7 Overload relays do not work with Variable Frequency Drives or any PN Softstarter with braking options.

CEP7

Solid State Overload Relays

Type CEP7 – Separately Mounted

	Adustment	Trip Class 10		Trip Class 20	
Overload Relay	Range (A)	Catalog Number	Price	Catalog Number	Price
	Manual Re	set for 3Ø Applicatio	ns 0		
	0.10.32	CEP7-M32-0.32-10-P-A	61	CEP7-M32-0.32-20-P-A	61
	0.321.0	CEP7-M32-1.0-10-P-A	61	CEP7-M32-1.0-20-P-A	61
and the second sec	1.02.9	CEP7-M32-2.9-10-P-A	61	CEP7-M32-2.9-20-P-A	61
	1.6 5.0	CEP7-M32-5-10-P-A	61	CEP7-M32-5-20-P-A	61
	3.712	CEP7-M32-12-10-P-A	61	CEP7-M32-12-20-P-A	61
and the second	1232	CEP7-M32-32-10-P-A	65	CEP7-M32-32-20-P-A	65
G 1-00	3.712	CEP7-M37-12-10-P-A	61	CEP7-M37-12-20-P-A	61
and the second s	1237	CEP7-M37-37-10-P-A	86	CEP7-M37-37-20-P-A	86
	1445	CEP7-M45-45-10-P-A	126	CEP7-M45-45-20-P-A	126
CEP7-M37	2685	CEP7-M85-85-10-P-A	147	CEP7-M85-85-20-P-A	147
	Manual Re	set for 1Ø Applicatio	ns 🛈		
< 4	2.07.0	CEP7S-M32-7-10-P-A	61	CEP7S-M32-7-20-P-A	61
-lese	5.015	CEP7S-M32-15-10-P-A	61	CEP7S-M32-15-20-P-A	61
	1232	CEP7S-M32-32-10-P-A	65	CEP7S-M32-32-20-P-A	65
and a	1237	CEP7S-M37-37-10-P-A	85	CEP7S-M37-37-20-P-A	85
	1445	CEP7S-M45-45-10-P-A	126	CEP7S-M45-45-20-P-A	126
CEP7S-M85	2685	CEP7S-M85-85-10-P-A	147	CEP7S-M85-85-20-P-A	147

Separate Mount CEP7 Solid State Overload Relays, Manual Reset 000

Separate Mount CEP7 Solid State Overload Relays, Automatic/Manual Reset 0200

	Adustment	Trip Class 10		Trip Class 20	
Overload Relay	Range (A)	Catalog Number	Price	Catalog Number	Price
Aut	omatic or Man	ual Reset for 3Ø Appl	ications	00	
	0.10.32	CEP7-A32-0.32-10-P-A	64	CEP7-A32-0.32-20-P-A	64
	0.321.0	CEP7-A32-1.0-10-P-A	64	CEP7-A32-1.0-20-P-A	64
	1.02.9	CEP7-A32-2.9-10-P-A	64	CEP7-A32-2.9-20-P-A	64
	1.65.0	CEP7-A32-5-10-P-A	64	CEP7-A32-5-20-P-A	64
	3.712	CEP7-A32-12-10-P-A	64	CEP7-A32-12-20-P-A	64
	1232	CEP7-A32-32-10-P-A	68	CEP7-A32-32-20-P-A	68
	3.712	CEP7-A37-12-10-P-A	64	CEP7-A37-12-20-P-A	64
0	1237	CEP7-A37-37-10-P-A	91	CEP7-A37-37-20-P-A	91
	1445	CEP7-A45-45-10-P-A	105	CEP7-A45-45-20-P-A	105
CEP7-A45	2685	CEP7-A85-85-10-P-A	116	CEP7-A85-85-20-P-A	116
Aut	omatic or Man	ual Reset for 1Ø Appl	ications	5 0 8	
	2.07.0	CEP7S-A32-7-10-P-A	64	CEP7S-A32-7-20-P-A	64
1	5.015	CEP7S-A32-15-10-P-A	64	CEP7S-A32-15-20-P-A	64
	1232	CEP7S-A32-32-10-P-A	64	CEP7S-A32-32-20-P-A	64
ALC: N	1237	CEP7S-A37-37-10-P-A	91	CEP7S-A37-37-20-P-A	91
0 113	1445	CEP7S-A45-45-10-P-A	135	CEP7S-A45-45-20-P-A	135
CEP7S-A32	2685	CEP7S-A85-85-10-P-A	152	CEP7S-A85-85-20-P-A	152

Most industrial applications usually call for an overload relay that must be manually reset in the event of a trip. This allows the cause of the overload to be identified before the motor is restarted. An overload relay that resets automatically is generally for specialized, or remote applications, such as rooftop AC units where restarting the motor will not harm people or equipment. Motor Protection

CEP7

- \blacksquare 3-phase CEP7 units are only designed for $3\varnothing$ applications. Single phase CEP7S units are only designed for $1\varnothing$ applications.
- This reference is not intended to be a guide for selecting contactors. Size overload relays using the full load current of the motor.
 CEP7 Over Softstarter
- The reset time of a CEP7 set in the automatic mode is approximately 180 seconds.
 - CEP7 Overload relays do not work with Variable Frequency Drives or any PN Softstarter with braking options.

Solid State Overload Relays

Type CEP7 – Large Amp

Large Amp CEP7 Solid State Overload Relays, Automatic and Manual Reset 0000

	Used with	Adustment	Trip Class 10		Trip Class 20		
Overload Relay	Contactor	Range (A)	Catalog Number	Price	Catalog Number	Price	
	Manua	al Reset for 3Ø	Applications 1				
	CA6-95(-El)CA6-115(-El)	66110	CEP7-M110-10	200	CEP7-M110-20	200	
СЕР7-М110	CA6-140(-EI)CA6-180(-EI)	57180	CEP7-M180-10	260	CEP7-M180-20	260	
	Automatic or I	Manual Reset fo	or 3Ø Applications 0	3			
	CA6-95(-EI)CA6-110(-EI)	66110	CEP7-A110-10	207	CEP7-A110-20	207	
CEP7-A110	CA6-140(-El)CA6-180(-El)	57180	CEP7-A180-10	277	CEP7-A180-20	277	

Connection Hardware for Large Amp CEP7 Overload Relays

Lug or Accessory	Connection	Description	Catalog Number	Price
	• Hex head bolts	Flexible Conductors (priced as complete set, containing 3 conductors and 6 washers) For CEP7-M(A)110 For CEP7-M(A)180	CEP7-110-PCE1 CEP7-180-PCF1	45 63
	Single connections to each pole Accepts round conductors only #8#1/0 AWG (for CEP7-110) #6250 MCM (for CEP7-180)	Screw Type Lugs ③ - (set of 3 - two sets required to wire line and load sides) For CEP7-M(A/B)110 For CEP7-M(A/B)180	CEP7-110-LE1 CEP7-180-LF1	25 55
		Terminal Covers - Provides touch protection to IP20. Includes both line and load side. For CEP7-M(A, B)110 For CEP7-M(A, B)180	СЕР7-110-НА СЕР7-180-НА	19 24

- \blacksquare 3-phase CEP7 units are only designed for 30 applications.
- This reference is not intended to be a guide for selecting contactors. Size overload relays using the full load current of the motor.
- The reset time of a CEP7 set in the automatic mode is approximately 180 seconds.
- CEP7 Overload relays do not work with Variable Frequency Drives or any Sprecher + Schuh PN Softstarter with braking options.
- If connecting the CEP7 directly to a CA6 contactor with flexible conductors, order one set of lugs from this page for the CEP7 (load side) and one set of lugs from the CA6 section for the CA6 (line side). CA6-HB and HU lugs will not work with the CEP7.

AC / DC Coil Codes & "-EI" Coil Upgrade Adders

All Contactor and Starter Configurations

Note on Coil Codes: All catalog numbers, list prices and enclosure dimensions in this section reflect contactors with AC coils. If necessary, add the appropriate price adder to the list price for each coil required. Remember that reversing applications require two coils (Price Adder x 2). For DC coils, select Coil Code from the second table. – CA7 contactor catalog numbers must be modified when using DC coils. Example: For CA7-9...CA7-43 contactors, add a "C" to catalog number. Ex: CA7-9... becomes CA7-9C... For CA7-60...85 contactors, add a "D" to catalog number. Ex: CA7-60... becomes CA7-60D...

A.C. Coil Codes & Voltage Ranges 10

A.C. Coil Codes U (Replace "*" in cat.# with coil code)	CA th CA7 50 Hz	7-9 ru /-85	CA6 CA6 CA6 CA6 CA6	5-95 -110 -140 -180	CA6-95-EI € CA6-110-EI € 50 / 60 Hz	CA6-140-EI ☺ CA6-180-EI ☺	CA6-210-EI CA6-250-EI CA6-300-EI CA6-420-EI 50 / 60 Hz	③ CA5-700 CA5-860 50 / 60 Hz	© CA5-1000 CA5-1200 50 / 60 Hz
24	00112	00112	21V	24V	24-28V	24-28V	~	~	~
24Z	24V	24V	~	~	~	~	~	~	~
110	100V	100-110V	95V	110V	~	~	~		110V
120	110V	120V	105V	120V	110-130V	110-130V	110-130V	110-120V	~
208	~	208V	180V	208V	~	~	~	~	~
220	~	~	190V	220V	~	~	~	~	220V
220W 🕑	~	208-240V	~	~	208-277V	208-277V	~	~	
240	220V	240V	210V	240V	~	~	~	220-240V	~
277	240V	277V	240V	277V	~	~	~	~	~
380	380-400V	440V	380-400V	440-460V	380-400V	380-400V	380-400V	380-415V	380V
440	~	~	~	~	~	~	~	~	440V
480	440V	480V	415V	480V	~	~	~	440-480V	~
575	2	~	500V	575V	~	~	~	~	~
600	550V	600V	~	~	~	~	~	~	~
XXX	~	~	~	~	~	~	~	Without coil	Without coil
Price Adder 🛛	-	-		~	75	150	~	~	~

D.C. Coil Codes & Voltage Ranges 10

D.C. Coil ↓ Codes ↓ (Replace " * " in cat.#	CA7-9C O thru CA7-30C O	CA7-37C 🕑 CA7-43C 🕑	CA7-60D Ø CA7-72D Ø CA7-85D Ø	CA6-95 CA6-110	CA6-140	CA6-95-EI © CA6-110-EI ©	CA6-140-EI thru CA6-300-EI 📀	CA6-420-EI 🞯	CA5-700 thru CA5-1200 ©
with coil code)	Voltage	Voltage	Voltage	Voltage	Voltage	Voltage	Voltage	Voltage	
12D	12VDC	12VDC	~	~	~	~	~	~	CA5-700 and 860 contactors
12DD 4	~	~	12VDC	~	~	~	~	~	operate with both AC and DC
24D	24VDC	24VDC	~	24VDC	24VDC	24-28VDC	24-28VDC	~	operation, select A.C. Coil
24DD 🔮	24VDC	24VDC	24VDC	~	~	~	~		AC Coil Code 120
48D	48VDC	48VDC	~	48VDC	48VDC	48-72VDC	48-72VDC	48-72VDC	100-110VDC AC Coil Code 240
48DD 🔮	~	~	48VDC	~	~	~	~	~	200-220VDC
110D	110VDC	110VDC	~	110VDC	90-135VDC	90-135VDC	90-135VDC	110-135VDC	345-380VDC
110DD 🔮	~	~	110VDC	~	~	~	~	~	AC Coil Code 480 400-440VDC
220D	220VDC	220VDC	~	220VDC	170-255VDC	170-255VDC	170-255VDC	190-255VDC	Contact factory for informa- tion on DC coils for CA5-1000
220DD 🔮	~	~	220VDC	~	~	~	~	~	and CA5-1200 contactors.
Price Adder 🛛	35	60	75	100	200	175	350	775	~

Other coil voltages available. Refer to Contactor Renewal Parts in Section A of this catalog, or contact nearest Sprecher+Schuh sales office.

Wide range coil.

• Coils are field convertable to operate with PLC interface.

④ "DD" coils include built-in diode surge suppressor.

• Add appropriate price adder(s) to list price of enclosed contactors and starters.

Remember to add price for each coil required. Reversing applications require two coils (Price Adder x 2).

CA5 coils utilize a special coil pair arrangement with a feeder group. For detailed coil information, please refer to CA5 contactors in Section A.

Modify CA7 catalog numbers to include either a "C" or a "D" as shown at top of page.

Renewal Coils

CA7 Contactors – D.C. Control

Renewal Coils - D.C. 000

		True DO	Replacement C	Coils 🕖	Two	Winding DC Re	placement Coi	s 🛛
		For	use with contacte	or		For use with	contactor	
		CA7-9C16C	CA7-23C37C	CA7-43C	CA7-9Y16Y	CA7-23Y37Y	CA7-43Y	CA7-60D85D
DC	DC Coil	CA7-9D16D	CA7-23D37D	CA7-43D	~	~	~	0
Control	↓ Codes ↓	CAQ7-16C	CAQ7-37C	~	~	~	~	~
Voltages	ଥ	CAN7-12C	CAN7-30C3/C	~ CNV 010	~	~	~	CAN7-72D
		Cot No	Cot No	Cot No	~ Cot No	~ Cot No	~ Cot No	CivA-210
01/ @	00			Udl. NU.	Gal. NO.	Gal. NU.	Gal. NU.	Gal. NO.
	90	14/00	10700	10/00	~	~	~	~
10V	900 12D	~	~	~	14/001	107001	107001	I E / OOIVI
12V	120	14/08	10708	10708	~	~	~	~
	240	~	~	~	14/081	107081	107081	16708101
240	240	IA/14	10/14	TD/14	~	~	~	~
24V Diode 00	2400	TA/14M	1C/14M	TD714W	IA/14Y	1C/14Y	ID/14Y	1E714W
36V	360	IA/19	10/19	ID/19	~	~	~	~
36V Diode	3600	~	~	~	TA/19Y	1C/19Y	1D/19Y	TE/19M
48V	48D	IA724	1C724	TD724	~	~	~	~
48V Diode	48DD	~	~	~	TA724Y	TC724Y	TD724Y	TE724M
60V	60D	TA774	TC774	TD774	~	~	~	~
60V Diode	60DD	~	~	~	TA774Y	TC774Y	TD774Y	TE774M
64V	64D	TA727	TC727	TD727	~	~	~	~
64V Diode	64DD	~	~	~	TA727Y	TC727Y	TD727Y	TE727
72V	72D	TA728	TC728	TD728	~	~	~	~
72V Diode	72DD	~	~	~	TA728Y	TC728Y	TD728Y	TE728M
80V	80D	TA729	TC729	TD729	~	~	~	~
80V Diode	80DD	~	~	~	TA729Y	TC729Y	TD729Y	TE729M
110V	110D	TA733	TC733	TD733	~	~	~	~
110V Diode	110DD	~	~	~	TA733Y	TC733Y	TD733Y	TE733M
115V	115D	TA734	TC734	TD734	~	~	~	~
115V Diode	115DD	~	~	~	TA734Y	TC734Y	TD734Y	TE734M
125V	125D	TA737	TC737	TD737	~	~	~	~
125V Diode	125DD	~	~	~	TA737Y	TC737Y	TD737Y	TE737M
220V	220D	TA747	TC747	TD747	~	~	~	~
220V Diode	220DD	~	~	~	TA747Y	TC747Y	TD747Y	TE747M
230V	230D	TA749	TC749	TD749	~	~	~	~
230V Suppres.	230DS	~	~	~	TA749Y	TC749Y	TD749Y	TE749F
250V	250D	TA751	TC751	TD751	~	~	~	~
250V Suppres.	250DS	~	~	~	TA751Y	TC751Y	TD751Y	TE751F
Price (coil with	out diode)	55	75	95	~	~	~	~
Price (coil with	i diode)	80	100	120	80	100	120	140

True DC coil (typical)

Two Winding DC coil (typical) 6

Note: The "DD" coils listed above include an integrated bi-directional diode. Drop out time of this design is significantly improved when compared to an external diode. See ratings on page A47.

- Other coil voltages available. Contact your Sprecher + Schuh representative for information.
- O DC Codes in large, bold letters indicate coils that are standard stocked items.
- **③** Voltage operating range: $0.65...1.3 \times U_s$.
- Voltage operating range: $0.7...1.25 \times U_s^{"}$.
- © CA7-60D...85D contactors have a two winding coil with built-in late break auxiliary contact and coil suppression.
- CA7-9Y...43Y two winding coils are sold for renewal parts only and are not interchangeable with standard CA7-9...43 AC coil contactors or CA7-9C...43C true DC coil contactors. CA7-9Y...43Y contactors should be tested following a coil swap to insure functionality of the timed auxiliary.

AC and DC coils on CNX-xxx contactors are not interchangeable.

(3) "DD" coils with integrated surge suppression diode fit CA7-xxD contactors.

GROUP VI

SECTION

VA			APPROX.	DIMENSIONS INC	HES (CM.)		MOUNTING SLOT	APPROX.
RATING	CATALOG NUMBER	A	В	С	D	E	F	SHIPPING WT
50	AE06-0050	2.69 (6.8)	3.00 (7.6)	2.81 (7.1)	2.03 (5.1)	2.53 (6.4)	.20 x .40 (0.5 x 1.0)	2.5 (1.1)
75	AE06-0075	3.22 (8.1)	3.00 (7.6)	2.81 (7.1)	2.53 (6.4)	2.53 (6.4)	.20 x .40 (0.5 x 1.0)	3.5 (1.6)
100	AE06-0100	3.28 (8.3)	3.41 (8.6)	3.09 (7.8)	2.41 (6.1)	2.81 (7.1)	.20 x .40 (0.5 x 1.0)	4.0 (1.8)
150	AE06-0150	3.88 (9.8)	3.84 (9.7)	3.41 (8.6)	2.97 (7.5)	3.13 (7.5)	.20 x .40 (0.5 x 1.0)	6.5 (2.9)
250	AE06-0250	4.13 (10.4)	4.50 (11.4)	3.84 (9.7)	2.94 (7.4)	3.75 (9.5)	.20 x .40 (0.5 x 1.0)	9.2 (4.2)
350	AE06-0350	5.00 (12.7)	4.50 (11.4)	3.84 (9.7)	3.78 (9.6)	3.75 (9.5)	.20 x .40 (0.5 x 1.0)	12.7 (5.8)
500	AE06-0500	5.53 (14.0)	5.25 (13.3)	4.66 (11.8)	4.16 (10.5)	4.34 (11.0)	.31 x .69 (0.8 X 1.7)	19.0 (8.6)
750	AE06-0750	6.81 (17.3)	5.25 (13.3)	4.66 (11.8)	5.75 (14.6)	4.31 (10.9)	.31 x .69 (0.8 X 1.7)	26.0 (11.8)

GROUP VII

208/230/460 PRIMARY VOLTS -- 115 SECONDARY VOLTS -- 1Ø, 50/60 Hz

VA			APPROX.	DIMENSIONS INC	HES (CM.)		MOUNTING SLOT	APPROX.
RATING	CATALOG NUMBER	А	В	С	D	E	F	SHIPPING WT
50	AE07-0050	2.84 (7.2)	3.00 (7.6)	2.81 (7.1)	2.16 (5.4)	2.53 (6.4)	.20 x .40 (0.5 x 1.0)	2.6 (1.2)
100	AE07-0100	3.41 (6.6)	3.41 (8.6)	3.09 (7.8)	2.69 (6.8)	2.81 (7.1)	.20 x .40 (0.5 x 1.0)	4.2 (1.9)
150	AE07-0150	3.88 (9.8)	3.75 (9.5)	3.41 (8.6)	3.09 (7.8)	3.09 (7.8)	.20 x .40 (0.5 x 1.0)	6.7 (3.1)
250	AE07-0250	4.16 (10.5)	4.50 (11.4)	4.03 (10.2)	3.28 (8.3)	3.75 (9.5)	.20 x .40 (0.5 x 1.0)	9.5 (4.3)
350	AE07-0350	5.19 (13.1)	4.50 (11.4)	4.03 (10.2)	4.38 (11.1)	3.75 (9.5)	.20 x .40 (0.5 x 1.0)	13.4 (6.1)
500	AE07-0500	5.88 (14.9)	5.25 (13.3)	4.66 (11.8)	4.78 (12.1)	4.38 (11.1)	.31 x .69 (0.8 X 1.7)	19.0 (8.6)
750	AE07-0750	6.81 (17.3)	5.25 (13.3)	4.66 (11.8)	5.75 (14.6)	4.38 (11.1)	.31 x .69 (0.8 X 1.7)	27.0 (12.2)

GROUP XII

230/460/575 PRIMARY VOLTS --- 95/115 SECONDARY VOLTS --- 1Ø, 50/60 Hz

VA			APPROX.	MOUNTING SLOT	APPROX.			
RATING	CATALOG NUMBER	A	В	С	D	E	F	SHIPPING WT
50	AE12-0050	2.88 (7.3)	3.00 (7.6)	2.81 (7.1)	2.19 (5.5)	2.53 (6.4)	.20 x .40 (0.5 x 1.0)	2.6 (1.2)
100	AE12-0100	3.59 (9.1)	3.41 (8.6)	3.09 (7.8)	2.88 (7.3)	2.81 (7.1)	.20 x .40 (0.5 x 1.0)	4.2 (1.9)
150	AE12-0150	3.94 (10.0)	3.78 (9.6)	3.41 (8.6)	3.28 (8.3)	3.09 (7.8)	.20 x .40 (0.5 x 1.0)	6.8 (3.1)
250	AE12-0250	4.16 (10.5)	4.50 (11.4)	4.03 (10.2)	3.22 (8.1)	3.75 (9.5)	.20 x .40 (0.5 x 1.0)	9.5 (4.3)
350	AE12-0350	5.00 (12.7)	4.50 (11.4)	4.03 (10.2)	3.69 (9.3)	4.31 (10.9)	.20 x .40 (0.5 x 1.0)	13.2 (6.0)
500	AE12-0500	5.84 (14.8)	5.25 (13.3)	4.66 (11.8)	4.66 (11.8)	4.38 (11.1)	.31 x .69 (0.8 X 1.7)	19.2 (8.7)
750	AE12-0750	6.81 (17.3)	5.25 (13.3)	4.66 (11.8)	5.81 (14.7)	4.38 (11.1)	.31 x .69 (0.8 X 1.7)	27.0 (12.2)

TOP VIEW

SIDE VIEW

Acme Electric Corporation

> 4815 West Fifth Street Lumberton, NC 28358 910-738-1121 Inside NC 800-334-5214 Outside NC 910-739-0024 Fax www.acmepowerdist.com

Features

- · Easy installation with strip terminal
- Output adjustable from 12V to 15V
- Tight regulation: 0.05% Line; 0.05% Load
- Full Output Ratings to +50°C
- Built in OVP on 5 Volt Outputs
- OVP Option for 12V, 15V and 24V
- Foldback Current Limiting Overload Protection
 with Automatic Recovery

General Specifications

Linear Open Frame DC Power Supplies Silver Line Instruction Manual Models: SLS-05-030-1T, SLS-12-017T, SLS-15-015T, SLS-24-012T

- Multi-Tap AC Inputs
- 100% Four-Hour Burn-in
- Limited Warranty for one year
- UL Recognized
- cUL, UL Recognized for Canada
- TUV Certified

General opecifications	
	Voltage/Current Ratings
Model Number	Output 1 (Refer to Adjustment section)
SLS-05-030-1T	5V/3.0A
SLS-12-017T	+12V/1.7A or +15V/1.5A
SLS-15-015T	+15V/1.5A or +12V/1.7A
SLS-24-012T	+24V/1.2A
Operating Temperature Range	0 to +50 ^o C (Derate to 40% at +70 ^o C)
Temperature Coefficient (Typical)	+/- 0.01% / ^O C
Stability	Within +/- 0.05% (For 24 hours after warm-up)
Vibration	Per MIL-STD-810C, Method 514
Shock	Per MIL-STD-810C, Method 516
EMI/RFI	Linear power supplies have inherently low conducted and radiated noise levels. For most system applications, these power supplies will meet the requirements of FCC Class "B" and VDE 0871 for Class "B" equipment without additional noise filtering.
Cooling	Convection
	Input Specifications
Multi Input (all units)	100/120/220/230/240 VAC selectable +/- 10% except 230 VAC is +15%, -6%
Frequency Range	47-63 Hz (Typical is 60 Hz. Derate output 10% at 50 Hz)
Transient Response Time	50 usec at 50% load changes for outputs rated up to 6A
	100 usec at 50% load changes for outputs rated 6A and over.
Fuse Requirements	Units are <i>not</i> fused internally. For safe operation, user must provide input line fuse as per values given in table.
	Output Specifications
Line Regulation	0.05% for +/- 10% change
Load Regulation	0.05% for 50% change
Ripple	3.0 mV maximum peak-to-peak
DC Output Adjustment Range	+/- 5% minimum
Overvoltage Protection	All 5 volt outputs include built-in OVP as standard (setting is 6.2V +/- 0.4V). OVP is optionally available on outputs
Remote Sensing	All units listed have remote sensing capability.
Overload Protection	125 to 150% foldback current limit

Contact Technical Services at tech@sola-hevi-duty.com with any questions. Visit our website at www.solaheviduty.com

Figure 1

Output Adjustment

Connection Chart

Step 1: Check the input AC connections

- Step 2: AC Adjust the AC input according to the connections.
- Step 3: Adjust +V. Adj. to +15V or +12V
- Step 4: Adjust -V. Adj. to -15V or -12V

Input AC Connections (See Figure 2)

For use at	Connect	Apply AC to:	Primary Fuse	Primary Fuse
			SLS-05-030-1T	SLS-12-017T SLS-15-015T SLS-24-012T
100 VAC	1-3, 2-4	1 & 5	0.5A / 125V	1.0A / 125V
120 VAC	1-3, 2-4	1 & 4	0.5A / 125V	1.0A / 125V
220 VAC	2-3	1&5	0.25A / 250V	0.5A / 250V
230 VAC	2-3	1 & 4	0.25A / 250V	0.5A / 250V
240 VAC	2-3	1 & 4	0.25A / 250V	0.5A/250V

Mechanical Dimensions: mm (inches)

Visit our website at www.solaheviduty.com

MICO B-Mount "Narrow" Brakes

FEATURES

- Complete self-contained dry design package
- Standard SAE mounting flanges
- High strength ductile iron castings for strength and durability
- Sintered bronze friction plates for high strength and long lining life
- Sealed environment isolation from contaminants
- Optional pressure override models available for limited service braking

SPECIFICATIONS

Torque range at 0 bar (0 psi)	
back pressure 113	3 - 542 N-m (1000 - 4800 lb-in)
Release pressure range	. 8.3 - 23.8 bar (120 - 345 psi)
Maximum operating pressure	
Maximum speed	
Volume of oil	
to release brake	8.2 cm ³ (0.5 in ³) (new linings)
	14.8 cm ³ (0.9 in ³) (maximum)

Maximum energy input	339,000 joule (250,000 ft-lb)
	(one stop, no damage)
Fluid type	Mineral base hydraulic oil
Maximum operating temperature	132 °C (270 °F)
Approximate weight.	10.9 kg (24 lb)

	ORDER INFO	RMATION (See	NOTE on the	top of page 5))	
	NOTE: On oil coole	d models (Z option)	actual torque is	67% of value	e shown on to	rque
	code chart. Horizontal -	Recommended sum 88.7 mL (3 oz) Vert	p oil fluid volun ical - Contact N	ne when mou /ICO West	nted:	
	гты гр_г	┸┼┸┛└	┿┙╹└┿			
					OPTIONS (Available separ combination)	rately or in
SEKIES	— I				S - Speed Sens Z - Oil Cooled -	or see note
B - SAE B-Mount 2-Bolt]		L			
OUTPUT SPLINE / INPU 06/06 SAE Designati 13/06 06 = 25.4 mm (1.00") Dia. 6E 13/12 12 = 12T 12/24 used with L2 13/13 13T 16/32 15/12 15 = 15T 16/32	ion 3 input face only]		ORQUE	M - Modified SA 2 or 4-Bolt B - SAE B-Mour L2 - Eaton Bearin N - NEMA	E A-Mount nt 2-Bolt ngless 2000
15/15			Code	Torque	Initial Release	Full Release
INPUT FACES	IICO West.		48 40 35 30 28 24 21 19 17 17 14	N-m (Ib-in) 542 (4800) 452 (4000) 396 (3500) 339 (3000) 316 (2800) 271 (2400) 237 (2100) 215 (19000) 192 (1700) 158 (1400) 136 (1200)	Pressure bar (psi) 17.9 (260) 15.2 (220) 20.0 (290) 16.5 (240) 15.9 (230) 12.4 (180) 12.4 (180) 11.7 (170) 9.7 (140) 8.3 (120) 13.8 (200)	Pressure bar (psi) 21.4 (310) 17.9 (260) 23.8 (345) 20.0 (290) 15.2 (220) 14.5 (210) 13.8 (200) 11.7 (170) 10.0 (145) 16.2 (235)
13.49/.531 DIA. THRU (0) 146.05/5.750 DIA. B.C.) (2 PLACES) (1) 2 PLACES)		101, 60/4, 000 10, 60/4, 000 13, 49/, 531 DIA. THRU (0N 146, 05/5, 750 DIA. B. C.) 2 PLACES)	DIA. PILOT	13,49/,531 DIA. (N1 146,05/5,7: (2 PLACES)	50 DIA. B.C.) 101.60 PILOT 101.60 PILOT 44.95 1.779 1.779 - 3.54 (TYP)	4.000 DIA.
M - Modified SAE A-Moun	nt 2 or 4-Bolt	B - SAE B-Mount 2-	-Bolt	L2 - Eato	on Bearingless 2	000
ASSIGNED NUM	BERS				101,60/4.000 DIA. PIL	от
CATALOG CODE NUMBER PRODUCTIO ORDER LMB-130621-M 02-556-32 LMB-130628-M 02-556-37 LMB-130635-M 02-556-33 LMB-130640-M 02-556-35 LMB-131219-L2 02-556-35 LMB-131228-L2 02-556-35 LMB-131240-L2 02-556-35 LMB-131240-L2 02-556-35 LMB-131310-B 02-556-32 LMB-131312-B 02-556-33	CATALOG CODE NUMBER 88 LMB-131324 88 LMB-131328 86 LMB-131330 88 LMB-131335 88 LMB-131340 60 LMB-151240 62 LMB-151528 82 LMB-151535 84 LMB-151540 65 LMB-151540	PRODUCTION ORDER NUMBER -B 02-556-360 -B 02-556-324 -B 02-556-320 -B 02-556-334 -B 02-556-376 -L2 02-556-428 -B 02-556-340 -B 02-556-340 -B 02-556-340 -B 02-556-340 -B 02-556-340			13,49/.5/ (N 146, (2 PLACE) 45' (TYP.) 3/8-16UNC-28 (N 209.6/8.25 C	51 DIA, THRU 05/5.75 DIA, B.C. S)
LMB-131314-B 02-556-31 LMB-131317-B 02-556-33	8			M	NEMA Mount	
<u>LIMB-131321-В 02-556-32</u>	<u></u>					40

Г

Multiple Disc Brakes (gold series)

Features

- Non-metallic lining material
- Extremely compact design
- Low release pressures
- Full system pressure capacity
- Low actuation volume

Benefits

- Design allows for pressure spikes of up to 4000 psi without affecting cycle life
- One repair kit for all serviceable parts
- Non-metallic lining material contributes

Operation

Braking is provided by stationary friction plates and a rotating disc splined to the shaft. Force is transmitted to the disc pack through the return plate by a series of preloaded springs. The brake is released by hydraulic pressure applied to the piston to compress the springs. The brake is self-applying since any function which reduces the hydraulic system pressure of the brake will start to initiate a brake application. Zero pressure produces maximum brake torque. Integrated return plate/separators help prevent piston cocking.

Units: Millimeters INCHES

SERIES UCP2 SET SCREW TYPE

	PILLOW BLOCKS - CAST HOUSING															
Shaft Dia.	Complete Pillow Block		Nominal Dimensions								I	Bolt	Housing	Bearing	Basio Rating	c Load gs (lbs)
	Number	h	а	е	b	s ₁	<i>s</i> ₂	g	w	Bi	п	0120	Number	Number	C	C _o
65 2 ½	UCP213D1 UCP213-208T	76.2 3	265 10 ⁷ ⁄16	203 8	70 2 ³ ⁄4	25 ³¹ ⁄32	28 1 ³ ⁄32	27 1 1⁄16	151 5 ¹⁵ ⁄16	<mark>65.1</mark> 2.563	25.4 1.000	M20 3⁄4	P213D1 P213T	UC213D1 UC213-208D1	12,900	9,000
70 2 ¹¹ /16 2 ³ /4	UCP214D1 UCP214-211T UCP214-212T	79.4 3 1⁄8	266 10 ¹⁵ ⁄32	210 8 %2	72 2 ²⁷ /32	25 ³¹ ⁄32	28 1 ³ ⁄32	27 1 ¼6	157 6 ³ ⁄16	74.6 2.937	30.2 1.189	M20 3⁄4	P214D1 P214T P214T	UC214D1 UC214-211D1 UC214-211D1	14,000	9,900
75 2 ¹⁵ ⁄16 3	UCP215D1 UCP215-215T UCP215-300T	82.6 3 ¼	275 10 ¹ 3⁄16	217 8 ¹⁷ ⁄32	74 2 ²⁹ /32	25 31/32	28 1 3⁄32	28 1 3⁄32	163 6 ¹³ 32	77.8 3.063	33.3 1.311	M20 3⁄4	P215D1 P215T P215T	UC215D1 UC215-215D1 UC215-300D1	14,900	11,100
80 3 1⁄8	UCP216D1 UCP216-302T	88.9 3 ½	292 11 ½	232 9 1⁄8	78 3 ¼16	25 ³¹ ⁄32	28 1 ³ ⁄32	30 1 ⅔16	175 6 %	82.6 3.252	33.3 1.311	M20 3⁄4	P216D1 P216T	UC216D1 UC216-302D1	16,300	11,900
85 3 ¼	UCP217D1 UCP217-304T	95.2 3 ³ ⁄4	310 12 ⁷ ⁄32	247 9 ²³ ⁄32	83 3 %2	25 ³¹ ⁄32	28 1 ³ ⁄32	32 1 ¼	187 7	85.7 3.374	34.1 1.343	M20 3⁄4	P217D1 P217T	UC217D1 UC217-304D1	18,700	14,400
90 3 ½	UCP218D1 UCP218-308T	101.6 4	327 12 ⁷ ⁄8	<mark>262</mark> 10 5∕16	88 3 ¹⁵ ⁄32	27 1 ¼6	30 1 ¾6	33 1 5∕16	200 7	96 3.780	39.7 1.563	M22 7⁄8	P218D1 P218T	UC218D1 UC218-308D1	21,600	16,100

* Unit with notched set screw as standard.

When the Ultimate in Efficiency and Reliability is a Must

This high performance motor contains a power element that is pressure loaded against internal leakage for high volumetric efficiency. It is wear compensated, so that its volumetric efficiency will not degrade with use. It can provide up to 7247 lb in of torque through a one-piece solid fixed axis shaft. This shaft design allows for full stationary spline contact between shaft and rotor, minimizing spline contact stresses. It also allows the shaft to be extended through the rear cover for mounting parking brakes, auxiliary drive functions or encoders for speed readout or closed loop control. Low internal pressure drop means high mechanical efficiency and higher flow capability. This rugged motor is the most compact on the market.

Options

- All Common 7/8 inch, 1 inch, 1 1/4 inch, 25 mm and 32 mm Shafts
- SAE O-Ring, NPTF, Manifold, BSPP and ISO6149-1 m22 x 1.5 Porting
- SAE A and SAE B Mounting
- 4 Bolt Mounting
- Cross-Over Relief Valve Package
- Low Speed Valve***
- Thru-Shaft*** for Parking Brake, Encoder Mount, Auxiliary Drive
- Stainless Steel Shaft ***

*** See Installation / Operation Information Section for Rating Limitations

Specifications

Low Speed High Torque Motors 110A Series

Features

- Self Sealing Power Element For High Volumetric Efficiency
- Wear Compensated Power Element Means Performance Will Not Degrade With Use
- One-Piece, Fixed Axis Shaft For Severe Applications
- Most Compact Motor on the Market
- Long Life
- Shaft Speed Disc Valve For High Overall Efficiency
- Low Internal Pressure Drop
- External Case Drain Possible
- High Starting Torque

Code	036	054	071	088	106	129	164	189	241	
	cc/rev	59	89	116	144	174	211	269	310	395
Displacement	(cu in/rev)	(3.6)	(5.4)	(7.1)	(8.8)	(10.6)	(12.9)	(16.4)	(18.9)	(24.1)
Max Speed (rpm) @	770	684	651	525	436	358	282	263	184	
Pressure Differentia	ıl (psi) Max Continuous	3000	3000	3000	3000	2750	2750	2500	2250	2250
Pressure Differentia	l (psi) Max Intermittent	3500	3500	3500	3500	3500	3500	3250	2500	2250
MaxTorque (lb in) @	1375	2129	2915	3593	4251	4729	5462	6131	7077	
MaxTorque (lb in) @	1664	2543	3401	4192	5019	6108	7247	6468	7163	
Maximum transient (less than 1% per minute) pressure is not to exceed 4000 psi.										

Maximum Side Load Capacity

Example:

Distance = .5 inches Torque = 4000 lb. in. Actual Side Load = 600 lbs @ 100 RPM From the chart above: Max. Side Load = 1000 lb Therefore, % S = $\frac{600}{1000}$ = 60% From the table: K=2.0 Calculation: Life = $\frac{200,000 \times 2.0}{100}$ = 4000 hours

Performance Data

Continuous / Intermittent* Operation

236 Ker Hydraulics

*Intermittent operation is defined as less than 10% each minute.

PSSGC.PM6, dg, ki

Performance data based on testing using hydraulic fluid with a viscosity of 180 SUS at 120° F.

Performance data is typical. Actual data may vary slightly from one production motor to another.

3.6 cu in / rev

	500	1000	1500	2000	2500	3000	3500
2	244 128	473 124	688 119	882 105	1031 82		
4	238	471	700	905	1067	1203	1293
	257	251	245	226	193	139	87
6	232	470	713	928	1103	1255	1344
	385	381	377	362	331	289	250
8	226	461	700	922	1117	1289	1404
	513	508	503	490	454	403	359
10	221	453	688	917	1132	1324	1464
	642	635	629	622	584	526	481
12	216	443	675	897	1117	1349	1564
	770	762	755	747	708	651	601
14	212	433	662	877	1103	1375	1664
	898	889	880	871	835	782	728
FLO\	N (GPN	1)					/

5.4 cu in / rev

PRESSURE (PSI)

	500	1000	1500	2000	2500	3000	3500
2	365 86	716 83	1051 80	1368 72	1635 58		
4	365	713	1076	1407	1700	1957	2134
	171	167	164	153	134	101	60
6	361	722	1100	1445	1765	2055	2278
	257	253	250	244	226	198	171
8	352	713	1057	1419	1731	2020	2237
	342	338	334	329	309	278	247
10	340	713	1057	1392	1697	1985	2196
	428	424	419	415	396	366	332
12	331	679	1038	1382	1697	2011	2316
	513	508	503	498	480	450	408
14	318	653	1019	1372	1732	2129	2543
	599	593	587	581	566	536	488
16	309	636	987	1335	1700	2091	2491
	684	678	671	664	645	618	566
18	281	600	955	1298	1668	2052	2438
	770	762	755	747	724	701	647
20	264	567	880	1220	1581	1947	2235
	856	849	843	830	804	785	729
22	247	541	824	1390	1593	2026	2423
	942	936	931	913	885	871	813

FLOW (GPM)

7.1 cu in / rev PRESSURE (PSI) 1000 1500 2000 2500 3000 3500 2848 3243 FLOW (GPM)

TORQUE (LB IN) SPEED (RPM)

8.8 cu in / rev

PRESSURE (PSI)

	500	1000	1500	2000	2500	3000	3500
2	605 52	1210 51	1774 50	2324 48	2869 41		
4	590	1207	1804	2387	2975	3475	3929
	105	103	102	99	88	73	63
6	574	1204	1833	2451	3080	3593	4141
	158	156	154	152	142	126	107
8	553	1183	1817	2437	3067	3634	4154
	210	208	206	203	192	178	159
10	532	1162	1801	2423	3054	3675	4167
	263	261	259	253	243	235	219
12	509	1127	1762	2381	3006	3623	4179
	315	312	309	303	295	284	264
14	487	1092	1722	2339	2958	3571	4192
	367	363	358	353	347	335	310
16	468	1044	1659	2269	2914	3529	4143
	420	415	411	403	396	384	362
18	448	997	1595	2199	2870	3487	4094
	472	468	463	454	444	435	416
20	428	973	1551	2178	2832	3446	4051
	525	520	516	507	499	486	458
22	408	949	1506	2158	2794	3405	4008
	578	573	569	562	555	537	499
25	348	846	1423	2008	2610	3191	3809
	656	651	647	636	625	608	575
30	279	740	1313	1821	2381	2921	3555
	787	782	776	760	744	725	697

FLOW (GPM) PSSGC.PM6, dg, ki Low Speed High Torque Motors **110A Series**

10.6 cu in / rev

	500	1000	1500	1750	2000	2250	2500	2750	3000	3250	3500
2	742	1501	2227	2569	2919	3264	3585	3897	4201	4537	4871
	44	43	42	41	40	39	37	34	31	27	23
4	721	1485	2214	2576	2935	3302	3669	3990	4251	4599	4945
	87	86	85	83	82	79	76	71	66	61	57
6	700	1468	2202	2583	2969	3359	3754	4036	4302	4660	5019
	131	129	128	127	126	122	118	112	106	104	102
8	675	1442	2189	2569	2952	3340	3733	4071	4403	4715	5019
	174	173	171	169	166	162	158	153	149	146	144
10	650	1417	2176	2554	2935	3321	3711	4106	4504	4770	5019
	218	216	214	210	207	203	198	197	196	193	190
12	616	1383	2138	2509	2885	3264	3648	4025	4403	4715	5019
	262	258	255	252	248	245	241	238	235	232	229
14	582	1350	2100	2465	2834	3207	3585	3943	4302	4660	5019
	305	301	296	293	290	287	284	279	275	272	268
16	567	1278	2050	2410	2775	3155	3543	3903	4264	4626	4989
	349	344	340	336	331	328	324	320	316	311	307
18	553	1206	1999	2354	2716	3103	3501	3862	4226	4592	4960
	392	388	384	379	373	369	365	361	357	351	345
20	529 436	1168 431	1885 427	2270 422	2674 416	3060 412	3458 408	3822 403	4188 399		·
22	506 479	1130 475	1771 470	2185 465	2632 460	3018 455	3416 451	3781 446	4150 441		
25	492 545	1110 541	1747 537	2145 531	2573 526	2951 520	3342 515	3700 511	4061 507		
30	470 654	1076 651	1708 647	2078 641	2474 634	2840 628	3219 621	3564 615	3913 608		
FLOW	FLOW (GPM)										

12.9 cu in / rev

PRESSURE (PSI)

	500	1000	1500	1750	2000	2250	2500	2750	3000	3250	3500		
2	905 36	1827 35	2698 34	3112 33	3527 32	3943 31	4336 29	4729 27	5115 25	5522 23	5925 20		
4	880 72	1807 70	2691 69	3128 68	3567 66	3999 64	4420 62	4805 58	5180 55	5599 51	6017 48		
6	854 107	1786 106	2684 105	3144 104	3607 103	4055 100	4503 97	4881 93	5245 89	5677 87	6108 85		
8	822 143	1755 142	2666 140	3122 139	3582 137	4035 134	4490 130	4912 127	5330 123	5723 121	6108 118		
10	790 179	1725 177	2648 175	3101 173	3556 171	4015 168	4476 164	4944 162	5416 160	5769 157	6108 154		
12	750 215	1683 212	2605 210	3060 208	3511 205	3965 202	4419 199	4867 196	5324 193	5718 189	6104 186		
14	710 251	1642 247	2562 244	3020 242	3465 240	3914 237	4363 234	4790 230	5233 226				
16	685 287	1557 283	2501 280	2948 277	3394 274	3850 271	4309 268	4742 263	5183 259				
18	661 322	1472 319	2439 316	2876 312	3322 307	3785 304	4256 301	4695 297	5133 293				
20	628 358	1418 355	2294 351	2741 347	3205 343	3651 339	4105 336	4522 331					
22	596 394	1363 390	2150 386	2605 382	3089 378	3517 374	3954 370						
25	571 448	1322 444	2093 440	2532 436	2997 431	3427 427	3869 422	Performance data is typical. Actual data					
30	531 537	1254 533	1999 530	2410 524	2843 519	3276 514		may vary slightly from one production					

FLOW (GPM)

PRESSURE (PSI)

16.4 cu in / rev

	PRESSURE (PSI													
	500	1000	1500	1750	2000	2250	2500	2750	3000	3250				
2	1155 28	2323 27	3406 26	3928 25	4437 24	4954 23	5462 22	5986 21	6507 20	7020 19				
4	1122 56	2297 55	3414 54	3963 53	4505 51	5023 49	5530 48	6065 46	6597 44	7124 43				
6	1088 85	2271 84	3422 83	3997 82	4573 80	5092 79	5599 77	6144 74	6687 72	7227 70				
8	1047 113	2232 112	3394 110	3963 109	4531 108	5071 106	5605 104	6164 101	6722 98	7247 95				
10	1005 141	2193 139	3367 138	3928 137	4489 135	5051 133	5612 131	6184 128	6758 125					
12	955 169	2061 167	3318 166	3888 164	4463 163	5021 161	5579 158	6141 155						
14	904 197	2086 195	3269 193	3878 192	4437 191	4998 188	5547 185	6072 181						
16	861 225	1925 223	3191 221	3763 219	4346 217	4908 215	5475 212							
18	818 254	1879 251	3113 248	3677 246	4255 243	4827 241								
20	783 282	1853 279	3015 276	3577 273	4155 270	4733 268								
22	718 310	1710 307	2721 304	3209 301	3706 297	4170 294								
25	672 352	1626 349	2596 345	3068 342	3550 338	4038 335								
30	596 423	1488 418	2388 414	2832 410	3289 406	3817 401								
FLOV	FLOW (GPM)													

18.9 cu in / rev

10	.9	cu II	n / re	9V	PRI	ESSUF	RE (PS	14	130	129	128	127	126
	500	1000	1250	1500	1750	2250	2500	16	1189 149	2723	3644 147	4545 146	5504 144
2	1285 23	2619 22	3224 21	3838 20	4442 18	5548 16	6131 13		1170	2685 166	3596 165	4488 164	5437 162
4	1264 47	2589 46	3250 45	3859 44	4486 42	5668 40	6282 38	20	1151 18 4	2685 183	3596 182	4430 180	5370 178
6	1228 73	2559 72	3240 71	3865 70	4513 69	5765 67	6409 66	22	1112 205	2608 204	3452 203	4258 202	5169 200
8	1171 97	2509 96	3176 95	3829 94	4503 93	5771 90	6439 89		1055 235	2455 232	3260 231	4085 230	4900 228
10	1114 121	2449 120	3111 119	3793 118	4476 117	5777 114	6468 112	30	959	2225	2925 282	3682 279	4363 273
12	1065 145	2391 144	3061 143	3750 142	4439 141	5747 137		FL	DW (GF	PM)	202	210	210
14	1016 169	2333 168	3011 167	3707 166	4402 165	5717 161							
16	975 200	2257 199	2938 198	3636 197	4326 195	5645 185		TORQUE (LB IN) 5717 SPEED (RPM) 161					
18	966 232	1988 230	2506 228	3037 227	3563 226		1						
20	941 263	1815 261	2253 259	2702 258	3143 256								
22	916 295	1643 293	2001 290	2367 288	2724 286								
25	879 342	1384 339	1622 335	1865 334	2094 331								
30	816 420	952 417	990 412	1027 410	1045 407		Perf	ata is typical. Actual data may vary slight	y from o	one proo	duction	motor	to anothe

24.1 cu in / rev

		cu n	1710	PRES	SSURE	(PSI)				
	500 1000 1250 1500 1750									
2	1515 15	3184 14	3884 12	4660 11	5427 10	6645 9				
4	1534 35	3145 34	4027 32	4718 30	5504 29	6904 28				
6	1496 56	3107 55	4027 54	4718 53	5504 52	7077 51				
8	1400 74	3030 73	3884 72	4660 70	5571 68	7163 66				
10	1304 93	2915 92	3740 91	4603 90	5571 89					
12	1266 112	2851 112	3708 110	4584 109	5549 107					
14	1227 130	2787 129	3676 128	4564 127	5527 126					
16	1189 149	2723 148	3644 147	4545 146	5504 144					
18	1170 167	2685 166	3596 165	4488 164	5437 162					
20	1151 184	2685 183	3596 182	4430 180	5370 178					
22	1112 205	2608 204	3452 203	4258 202	5169 200					
25	1055 235	2455 232	3260 231	4085 230	4900 228					
30	959 288	2225 285	2925 282	3682 279	4363 273					
FLO	FLOW (GPM)									

TORQUE (LB IN)	5717
SPEED (RPM)	161

FLOW (GPM) PSSGC.PM6, dg, ki

Inch equivalents for metric dimensions are shown in (**)

Length "L" and Weight

Displaceme	nt, Code	036	054	071	088	106
Length "L"	mm	112	117	121	127	131
Longth L	(inches)	(4.41)	(4.60)	(4.78)	(4.98)	(5.17)
Weight	kg	(7.0)	(7.4)	(7.7)	(8.0)	(8.4)
	(lb)	15.4	16.2	16.9	17.5	18.4
Displaceme	nt, Code	129	164	189	241	
L	mm	138	147	154	169	
Length	(inches)	(5.42)	(5.80)	(6.07)	(6.64)	
Weight	kg	8.7	9.4	9.8	10.8	
W Cigi It	(lb)	(19.1)	(20.6)	(21.6)	(23.7)	
Add 2.54	(.10) to "L" a	and .8 kg	(1.7 lb) t	o Weight	for Thru-	Shaft

Mounting

SAE B Flange

4 Bolt Flange

Shafts

Inch equivalents for metric dimensions are shown in (**)

45.5 (1.79)

26.9 (1.06)

Key 1/4 x 1 Woodruff #15 Per SAE J502

> ø 25.37 (.999)

-28.30 (1.114)

1" Keyed

Ł

-1/4-20 UNC thd

x 15.75 (.62) Min Deep

1" 6B Spline

45.5

(1.79)

25 mm Keyed

S

1 1/4" Keyed

Key 7.950 x 31.5 (.3130 x 1.24) Square

7/8" 13 Tooth Spline

32mm Keyed

1 1/4" Taper

1"-20 Hex Nut

Porting

*** See Installation/Operating Information Sections For Rating Limitations

Dimensions

Inch equivalents for metric dimensions are shown in (**)

Encoder Mount

*** See Installation / Operation Information Section for Rating Limitations

SAUER DANFOSS

Group 2

Gear Pumps and Motors Service Manual

SAUER DANFOSS Gear Pumps and Motors

2. General Information

2.1 General Description

Group 2 gear products consist of pumps, reversible pumps, uni- and bidirectional motors. This group of gear pumps and motors is characterized by a wide selection of components. It is possible to have a wide range of units resulting from a common base of components or processes. This manual describes the service procedures that can be applied to all the products of this range. The complete range of products detailed in this manual are:

- SNP 2 Standard gear pump
- SEP 2 Gear pump, similar to SNP2, without DU-Bushings (Cost Effective Model)
- SHP 2 Gear pump, similar to SNP2, with longer shaft journal bearings (high performance model)
- SKP 2 Gear pump, similar to SNP2, with larger shaft specially designed to accommodate SAE 11 tooth spline
- SNU 2 Unidirectional gear motor, similar to SNP2 pump
- SNM 2 Standard bidirectional gear motor
- SEM 2 Bidirectional gear motor, similar to SNM2, with lower pressure limits (Cost effective model)
- SNR 2 Bidirectional gear pump.
- SHM 2 Bidirectional gear motor, similar to SHP2 pumps, with longer shaft journal bearings, and higher pressure rating than SNM2

Generally, all these products follow the same procedures for assembling, disassembling, and servicing. In this manual, the SNP2 will be used as an example for all unidirectional pumps and motors (SNP/SEP/ SHP/SNU 2), and the SNM2 for all the bi-direction pumps and motors (SNM/SEM/SNR/SHM 2). SKP assembly and disassembly information will be handled in a separate section of this manual.

SAUER DANFOSS

Gear Pumps and Motors

Group 2

2.2 Design

3. Technical Specifications

3.1 Hardware Specifications

Pump Model		4	6	8	11	14	17	19	22	25
Displacement	cm³/rev [in³/rev]	3.9 [0.24]	6.0 [0.37]	8.4 [0.51]	10.8 [0.66]	14.4 [0.88]	16.8 [1.02]	19.2 [1.17]	22.8 [1.39]	25.2 [1.54]
SNP		3		-	-	3			3	
Peak Pressure	bar [psi]	280 [4060]	280 [4060]	280 [4060]	280 [4060]	280 [4060]	280 [4060]	230 [3335]	200 [2900]	175 [2538]
Rated Pressure	bar [psi]	250 [3625]	250 [3625]	250 [3625]	250 [3625]	250 [3625]	250 [3625]	210 [3045]	180 [2610]	160 [2320]
Minimum Speed at 0-100 bar	min ⁻¹ (rpm)	600	600	600	500	500	500	500	500	500
Minimum Speed at 100-180 bar	min ⁻¹ (rpm)	1200	1200	1000	800	750	750	700	700	700
Minimum Speed at 180 bar to rated pressure	min ⁻¹ (rpm)	1400	1400	1400	1200	1000	1000	1000	-	-
Maximum Speed	min ⁻¹ (rpm)	4000	4000	4000	4000	3500	3000	3000	3000	3000
SKP		-								
Peak Pressure	bar [psi]	280 [4060]	280 [4060]	280 [4060]	280 [4060]	280 [4060]	280 [4060]	260 [3770]	230 [3335]	200 [2900]
Rated Pressure	bar [psi]	250 [3625]	250 [3625]	250 [3625]	250 [3625]	250 [3625]	250 [3625]	240 [3480]	210 [3045]	190 [2755]
Minimum Speed at 0-100 bar	min ⁻¹ (rpm)	600	600	600	500	500	500	500	500	500
Minimum Speed at 100-180 bar	min ⁻¹ (rpm)	1200	1200	1000	800	750	750	700	700	700
Minimum Speed at 180 bar to rated pressure	min ⁻¹ (rpm)	1400	1400	1400	1200	1000	1000	1000	800	800
Maximum Speed	min ⁻¹ (rpm)	4000	4000	4000	4000	3500	3000	3000	3000	3000
SHP										
Peak Pressure	bar [psi]							260 [3770]	230 [3335]	200 [2900]
Rated Pressure	bar [psi]							240 [3480]	210 [3045]	190 [2755]
Minimum Speed at 0-100 bar	min ⁻¹ (rpm)							600	600	600
Minimum Speed at 100-180 bar	min ⁻¹ (rpm)							800	800	800
Minimum Speed at 180 bar to rated pressure	min ⁻¹ (rpm)							1000	1000	1000
Maximum Speed	min ⁻¹ (rpm)							3000	3000	3000
ALL		Th	e data be	low repre	esent mea	n values	for standa	rd config	ured pum	ps.
Weight	kg [lb]	2.3 [5.1]	2.4 [5.3]	2.5 [5.5]	2.7 [5.8]	2.9 [6.3]	3.0 [6.5]	3.1 [6.7]	3.2 [7.0]	3.3 [7.3]
Moment of Inertia of rotating components	x10 ⁻⁶ kg m ² [x10 ⁻⁶ lbf ft ²]	20.6 [489]	25.7 [610]	31.5 [747]	37.3 [885]	45.9 [1089]	51.7 [1227]	57.5 [1364]	66.2 [1571]	72.0 [1709]
Theoretical Flow at Maximum Speed	I / min [US gal / min]	15.6 [4.12]	24.0 [6.34]	33.6 [8.87]	43.2 [11.4]	50.4 [13.3]	50.4 [13.3]	57.6 [15.2]	68.4 [18.0]	75.6 [20.0]

T101 000E

Group 2

System Specifications 3.2

Inlet Press	sure
	bar absolute
Recommended Range	0.8 to 3.0
Minimum (cold start)	0.6
	T101 001E

Fluid Viscosity -mm²/s (cSt) [SUS]

10 [60]

12 to 60 [66 to 290]

1600 [7500]

T101 001E

T101 002E

Temperate	ure	
	0°	°F
Minimum (cold start)	-20	-4
Maximum Continuous	80	176
Peak (Intermittent)	90	194
		T101 003E
		T101 003E

Fluid Cleanliness Level	and β_x -Ratio	
Required Fluid Cleanliness Level (per ISO 4406)	Class 18/13	3 or better
Recommended β_x -Ratio (Suction Filtration)	$\beta_{35\text{-}45}=75$	$\beta_{10} \ge 2$
Recommended β_x -Ratio (Pressure or Return Filtration)	$\beta_{15-20} = 75$	$\beta_{10} \ge 10$
Recommended Inlet Screen Size (for Pressure or Return Filtration)	100 µm-1	l25 µm
		T101 004E

T101 004F

3.3 **Fluids and Filtration**

Minimum

Recommended Range

Maximum (cold start)

To prevent premature wear, it is imperative that only clean fluid enter the pump and hydraulic circuit. A filter capable of controlling the fluid cleanliness to Class 18/13 per ISO 4406 or better under normal operating conditions is recommended.

The filter may be located on the pump outlet (pressure filtration), inlet (suction filtration), or the reservoir return (return line filtration).

The selection of a filter depends on a number of factors including the contaminant ingression rate, the generation of contaminants in the system, the required fluid cleanliness, and the desired maintenance interval. Contaminant ingression rate is determined (among other things) by the type of actuators used in the system. Hydraulic cylinders normally cause higher levels of contamination to enter the system.

Filters are selected to meet these requirements using rating parameters of efficiency and capacity. Filter efficiency may be measured with a Beta ratio¹ (β_{v}) . For suction filtration, with controlled reservoir ingression, a filter with $\beta_{35-45} \ge 75$ (and $\beta_{10} \ge 2$) or better has been found to be satisfactory. For return or pressure filtration, filters with an efficiency of $\beta_{15-20} \ge 75$ (and $\beta_{10} \ge 10$) are typically required.

Since each system is unique, the filtration requirements for that system will be unique and must be determined by test in each case. Filtration system acceptability should be judged by monitoring of prototypes, evaluation of components, and performance throughout the test program.

See Sauer-Danfoss publications BLN-9887 [697581] and ATI-E 9201 for more information.

(1) Filter β_{v} ratio is a measure of filter efficiency defined by ISO 4572. It is defined as the ratio of the number of particles greater than a given diameter ("x" in microns) upstream of the filter to the number of these particles downstream of the filter.

OPERATION

Cartridge Valves Technical Information Solenoid valves CP530-3

This valve is a direct acting, 2 position, 4 Cross-sectional view mm [in] way spool type solenoid. Coil not shown for clarity 64.0 [2.52] 1.00 in · 41-47 N·m [30-35 lbf·ft] Schematic 2 4 7/8-14 UNF 3 1 P102 396 4 62.5 [2.46] 3 2 Theoretical performance psi bar 154 SUS (33 cSt) hyd. oil @ 100° F (38° C) 1 203 14 P102 282E **Specifications**

SPECIFICATIONS

Rated pressure	207 bar [3000 psi]
Rated flow at 7 bar	28 l/min [7 US gal/min]
[100 psi]	
Leakage	82 cm³/min [5 in³/min] @
	Rated pressure
Weight	0.49 kg [1.08 lb]

CP10-4

D10 16 watt

ORDERING **INFORMATION**

	CP530 - 3	- <u>B</u> - <u>6S</u> - <u>24D</u> - <u>S</u>	
Seals		[Termination
	Seal kit		S = Spade
B = Buna-N	120023		L = Lead
V = Viton	120024		C = Conduit
Body and ports			H = DIN 43650
	Body P/N		DE = Deutsch
0 = Cartridge	No body		M2 = Metri-Pak 150
6S = Aluminum, #6 SAE	CP10-4-6S	Voltage —	
8S = Aluminum, #8 SAE	CP10-4-8S	10D = 10 VDC	
		12D = 12 VDC	
		20D = 20 VDC	
		24D = 24 VDC	
		120A =120 VAC	
		240A =240 VAC	P102 325E

Cavity

Coil

PART NUMBERS

1150-0200 SRT

LEAD ACCURACY: ±0.004 in./ft. Single Start

- **Ball Circle Diameter** 1.150
- 0.200 Lead
- **Root Diameter** 1.015
- 0.125 Nominal Ball Diameter
- Screw Weight (lbs./ft.) 3.18

Screw Lengths	RH	LH
4 FT.	SRT8738	SRT0285
8 FT.	SRT8746	SRT0286
12 FT.	SRT8753	SRT0287
16 FT.	SRT0430	SRT0431
Gustom cut lengths availa	ble up to 24'. For longer lend	ths contact Customer Service.

Standard

SEL Adjustable Preload Ball Nut

PRODUCT SPECIFICATIONS	RH	LH
Dynamic Load (lbs.)	1,185	1,185
Static Load (lbs.)	13,090	13,090
Torque to Raise 1 lb. (inlb.)	.035	.035
Preload (lbs.)	240	240
Nut Weight (lbs.)	1.34	1.34
Ball Nut Number	SEL4270	SEL0206
Flange Part Number	FLG8283	FLG8283
Wiper Kit Part Number	WKB2652	WKB2652

QAD Adjustable Proload Flanged Rall Nut

121 hearing halls per circuit - 242 total per put

omi mujustavie i ieluau	i langeu ban n	ILIL	
PRODUCT SPECIFICATIONS	RH	LH	- 2.88 DIA
Dynamic Load (lbs.)	1,185		
Static Load (lbs.)	13,090	-	TYP Q O
Torque to Raise 1 lb. (inlb.)	.035	-	
Preload (lbs.)	240		
Nut Weight (lbs.)	1.8		
Ball Nut Number	SAR3042		
Flange	INTEGRAL	-	(5) HOLES ON 1.107 R
Wiper Type	BRUSH		2.28 BC DIA

1-.105

1.520 DIA

137

TWIN-LEAD SCREW

See page 148 for complete product details.

LUBRICANT

Prolong ball screw and nut performance with this special lubricant. See page 95 for complete product details.

1.760 DIA

Wiper Kit -

WKB2652

2 wipers and 1 retainer

> The specifications and data in this publication are believed to be accurate and reliable. However, it is the responsibility of the product user to determine the suitability of Nook Industries products for a specific application. While defective products will be replaced without charge if promptly returned, no liability is assumed beyond such replacement.

Go Back to Previous Screen

CONSOLIDATED NO. 7205 BG

ANGULAR CONTACT BALL BEARINGS - FLUSH GROUND 40° CONTACT ANGLE

	d	25
Dimensions (metric)	D	52
	В	15
Approx Wgt. 1bs	5	.300
	FAF	7205W SU
	FAG	7205 B.U (A/O)
	MRC	7205 DU
	ND	U-30205
	R&M	LJT 25
Interchange	SKF	7205 BEAG (Y/P)
	SKF (Eur.)	7205 BEAG (Y/P)
	STEYR	7205 BEAG (Y/P)
	Torrington	-

* These sizes are also available in suffix "B" - not flush ground.

1) The degree of contact angle varies between domestic manufacturers within a manufacturer's range; such as Fafnir - 20° up to and including 30 mm. bore, MRC-30°, New Departure - 35° for the entire range.

2) Suffix "M" indicates machined bronze cage.

3) Suffix "G" indicates that the bearings are universally flush ground suitable for Back-to-Back, Faceto-Face, or Tandem mounting.

4) Sizes 7200 BG thru 7218 BG may be equipped with steel retainers or with cages made from glass fiber reinforced polyamide 66 material.

Consolidated Bearings Company

10 Wing Drive, Cedar Knolls, NJ 07927 Phone: 973-539-8300 • Fax: 973-539-5902 Toll Free: 877-266-2744

Warehouses in: Atlanta • Chicago • Cedar Knolls • Columbus • Dallas • Houston Kansas City • Los Angeles • San Francisco

Push Buttons—Class 9001 Type K—30 mm

Heavy Duty Operators

Non-Illuminated Momentary Push Button Operators—UL Types 4, 13/NEMA 4, 13

For use in hazardous locations—See page 17-79.

Contact blocks and legend plate not included unless otherwise noted.

Description		Color	Operator with 1 N.O. and 1 N.C. Contact (KA1)	Price	Operator with 1 N.O. Contact (KA2)	Operator with 1 N.C. Contact (KA3)	Price	Operator Only with No Contacts	Price
		Black	KR1BH13	\$54.00	KR1BH5	KR1BH6	\$39.90	KR1B	\$25.70
		Red	KR1RH13	54.00	KR1RH5	KR1RH6	39.90	KR1R	25.70
	Full Guard	Green	KR1GH13	54.00	KR1GH5	KR1GH6	39.90	KR1G	25.70
		Universal 🔺	KR1UH13	54.00	KR1UH5	KR1UH6	39.90	KR1U	25.70
9001KR1B		Other	KR1∎H13	54.00	KR1∎H5	KR1∎H6	39.90	KR1∎	25.70
	No Guard	Black	KR3BH13	54.00	KR3BH5	KR3BH6	39.90	KR3B	25.70
		Red	KR3RH13	54.00	KR3RH5	KR3RH6	39.90	KR3R	25.70
		Green	KR3GH13	54.00	KR3GH5	KR3GH6	39.90	KR3G	25.70
		Universal 🔺	KR3UH13	54.00	KR3UH5	KR3UH6	39.90	KR3U	25.70
9001KR3B		Other	KR3■H13	54.00	KR3∎H5	KR3∎H6	39.90	KR3∎	25.70
		Black	KR2BH13	54.00	KR2BH5	KR2BH6	39.90	KR2B	25.70
\bigcirc		Red	KR2RH13	54.00	KR2RH5	KR2RH6	39.90	KR2R	25.70
	Extended Guard	Green	KR2GH13	54.00	KR2GH5	KR2GH6	39.90	KR2G	25.70
		Universal 🔺	KR2UH13	54.00	KR2UH5	KR2UH6	39.90	KR2U	25.70
9001KR2B		Other∎	KR2■H13	54.00	KR2∎H5	KR2∎H6	39.90	KR2∎	25.70

The universal push button operators contain one each of the following color inserts: black, red, green, yellow, orange, blue and white.
 See table below for color code.

Description	Color	Operator with 1 N.O. and 1 N.C. Contact (KA1)	Price	Operator with 1 N.O. Contact (KA2)	Operator with 1 N.C. Contact (KA3)	Price	Operator Only with No Contacts	Price	
	Snap-In Mu	Snap-In Mushroom Button							
	Black	KR4BH13	\$83.00	KR4BH5	KR4BH6	\$68.00	KR4B	\$54.00	
	Red	KR4RH13	83.00	KR4RH5	KR4RH6	68.00	KR4R	54.00	
a line of the second	Red♦	KR4R05H13	86.00	KR4R05H5	KR4R05H6	72.00	KR4R05	57.00	
	Green	KR4GH13	83.00	KR4GH5	KR4GH6	68.00	KR4G	54.00	
1 ³ / ₈ " Diam	eter Button Other★	KR4★H13	83.00	KR4★H5	KR4★H6	68.00	KR4★	54.00	
	Screw-On N	lushroom Button	With Set	Screw Security					
9001KR4B	Black	KR24BH13	83.00	KR24BH5	KR24BH6	68.00	KR24B	54.00	
	Red	KR24RH13	83.00	KR24RH5	KR24RH6	68.00	KR24R	54.00	
	Green	KR24GH13	83.00	KR24GH5	KR24GH6	68.00	KR24G	54.00	
	Other★	KR24★H13	83.00	KR24★H5	KR24★H6	68.00	KR24★	54.00	
	Snap-In Mu	shroom Button							
	Black	KR5BH13	83.00	KR5BH5	KR5BH6	68.00	KR5B	54.00	
	Red	KR5RH13	83.00	KR5RH5	KR5RH6	68.00	KR5R	54.00	
	Red ♦	KR5R05H13	86.00	KR5R05H5	KR5R05H6	72.00	KR5R05	57.00	
	Green	KR5GH13	83.00	KR5GH5	KR5GH6	68.00	KR5G	54.00	
2½" Diam Mushroon	eter ∩ Button Other★	KR5★H13	83.00	KR5★H5	KR5★H6	68.00	KR5★	54.00	
	Screw-On N	lushroom Button	With Set S	Screw Security					
9001KR5B	Black	KR25BH13	83.00	KR25BH5	KR25BH6	68.00	KR25B	54.00	
	Red	KR25RH13	83.00	KR25RH5	KR25RH6	68.00	KR25R	54.00	
	Green	KR25GH13	83.00	KR25GH5	KR25GH6	68.00	KR25G	54.00	
	Other★	KR25★H13	83.00	KR25★H5	KR25★H6	68.00	KR25★	54.00	

Knob has the words "Emergency Stop" in raised letters highlighted in white for readability.
 See table below for color code.

Color	■ KR1, 2, 3 Place Color Code in Type Number	★ KR4, 5, 24, 25 Place Color Code in Type Number
Blue Yellow White Orange Gray	L Y W S E	L Y S

Light Modules	page	17-77
Contact Blocks	page	17-78
H Contact Block Assembly Codes.	page	17-80
Legend Plates	page	17-81
Accessories	page	17-83
Replacement Parts.	page	17-86

For additional information, reference Catalog #9001CT0001.

D4B-N

OMRON

Safety Limit Switch

Positive Action Limit Switches with Direct Drive Contacts for Critical Switching Applications

- Snap-action contact for accurate switching with safe operation via direct drive positive opening mechanism
- Two sets of contacts: one (NC) for safety circuit and the other (NO) for control circuit
- Safety of lever settings ensured as a mechanism engages a gear between the operating position indicator plate and the lever
- Conforms to EN (TÜV) standards corresponding to the CE marking
- 3-conduit switches are available for easy wiring
- Conforms to these standards and EC Directives:

Machinery Directive Low Voltage Directive EN1088 EN50041

Approved Standards

Snap-Action Models

Agency	Standard	File No.
TÜV Rheinland	EN60947-5-1	R9851083 (Positive opening: approved) R9151372 (Positive opening: approval pending) (See note 1.)
UL	UL508	E76675
CSA	C22.2 No. 14	LR45746
BIA (See note 2.)	GS-ET-15	1-conduit: 9202158 3-conduit: 9309655

Note: 1. Adjustable roller lever, adjustable rod lever, coil spring, and plastic rod models only.

2. Not including adjustable roller lever, adjustable rod lever, coil spring, and plastic rod models.

Slow-Action Models

Agency	Standard	File No.
TÜV Rheinland	EN60947-5-1	R9151643 🔶
		(Positive opening: approved) (See note)
UL	UL508	E76675
CSA	C22.2 No. 14	LR45746
BIA (See note.)	GS-ET-15	1-conduit: 9202158 3-conduit: 9309655
SUVA (See note.)	SUVA	1-conduit: E6188.d 3-conduit: E6189.d

Note: Not including adjustable roller lever, adjustable rod lever, coil spring, and plastic rod models.

Ordering Information _____

MODEL NUMBER LEGEND

D4B-___N

1 2 3

- 1. Conduit
 - 1: PG13.5 (1-conduit) European type
 - 2: G1/2 (PF1/2) (1-conduit) Japanese type
 - 3: 1/2-14NPT (1-conduit) North American type
 - 5: PG13.5 (3-conduit) European type
 - 6: G1/2 (PF1/2) (3-conduit) Japanese type
 - 7: 1/2-14NPT (3-conduit) North American type

2. Built-in Switch

- 1: 1NC/1NO (Snap-action)
- A: 2NC (Slow-action)
- 5: 1NC/1NO (Slow-action) (See Note)

Note: Excluding D4B- 81N and D4B- 87N models.

3. Actuator

- 00: Switch box (without head)
- 11: Roller lever (standard)
- 13: Adjustable rubber roller lever
- 16: Adjustable roller lever
- 17: Adjustable rod lever
- 1R: Roller lever
 - (conventional D4B-compatible)
- 70: Top plunger
- 71: Top roller plunger
- 81: Coil spring
- 87: Plastic rod

Description	ภ	Part number								
Actuator		Conduit size/typ	pe							
	I	PG13.5 (Europe	ean)		G1/2 (Japanese	э)		1/2-14NPT (No	rth American)	
		1NC/1NO (Snap-action)	1NC/1NO (Slow-action)	2NC (Slow-action)	1NC/1NO (Snap-action)	1NC/1NO (Slow-action)	2NC (Slow-action)	1NC/1NO (Snap-action)	1NC/1NO (Slow-action)	2NC (Slow-action)
Side rotary	Roller lever (form A)	D4B-1111N	D4B-1511N	D4B-1A11N	D4B-2111N	D4B-2511N	D4B-2A11N	D4B-3111N	D4B-3511N	D4B-3A11N
	Adjustable roller lever, rubber, 50.0 mm (1.97 in) dia.1/2-14NPT	D4B-3113N	D4B-3513N	D4B-3A13N						
	Adjustable roller lever (See Note 1)	D4B-1116N	D4B-1516N	D4B-1A16N	D4B-2116N	D4B-2516N	D4B-2A16N	D4B-3116N	D4B-3516N	D4B-3A16N
	Adjustable rod lever (form D) (See Note 1)	D4B-1117N	D4B-1517N	D4B-1A17N	D4B-2117N	D4B-2517N	D4B-2A17N	D4B-3117N	D4B-3517N	D4B-3A17N
Top plunger	Plain (form B)	D4B-1170N	D4B-1570N	D4B-1A70N	D4B-2170N	D4B-2570N	D4B-2A70N	D4B-3170N	D4B-3570N	D4B-3A70N
	Roller (form C)	D4B-1171N	D4B-1571N	D4B-1A71N	D4B-2171N	D4B-2571N	D4B-2A71N	D4B-3171N	D4B-3571N	D4B-3A71N
Wobble lever	Coil spring	D4B-1181N		D4B-1A81N	D4B-2181N		D4B-2A81N	D4B-3181N		D4B-3A81N
(See Note 2)	Plastic rod	D4B-1187N		D4B-1A87N	D4B-2187N		D4B-2A87N	D4B-3187N		D4B-3A87N
Standards		EN60947-5-1	$\overline{\bigcirc}$		EN60947-5-1	$\overline{\bigcirc}$		EN60947-5-1	\bigcirc	

Note: 1. The slow-action models with adjustable roller levers or adjustable rol levers are approved under the Forced Opening Certificate (TÜV) of the EN standard, but they do not conform to the GS-ET-15 Standard (BIA) and SUVA. The snap-action models with adjustable roller levers or adjustable rol levers are not approved under the Forced Opening Certificate (TÜV) of the EN standard.

2. The wobble lever models are ordinary limit switches and are not approved under EN, GS, and SUVA's Forced Opening Certificate.

SWITCHES (EN50041)

3-Conduit Switch

Descriptio	n	Part number									
Actuator		Conduit size									
		PG13.5 (Europe	ean) See Note 2		G1/2 (Japanes	e)		1/2-14NPT Nor	1/2-14NPT North American		
		1NC/1NO (Snap-action)	1NC/1NO (Slow-action)	2NC (Slow-action)	1NC/1NO (Snap-action)	1NC/1NO (Slow-action)	2NC (Slow-action)	1NC/1NO (Snap-action)	1NC/1NO (Slow-action)	2NC (Slow-action)	
Side rotary	Roller lever (form A)	D4B-5111N	D4B-5511N	D4B-5A11N	D4B-6111N	D4B-6511N	D4B-6A11N	D4B-7111N	D4B-7511N	D4B-7A11N	
	Adjustable roller lever, rubber, 50.0 mm (1.97 in) dia.	D4B-7113N	D4B-7513N	D4B-7A13N							
	Adjustable roller lever (See Note 1)	D4B-5116N	D4B-5516N	D4B-5A16N	D4B-6116N	D4B-6516N	D4B-6A16N	D4B-7116N	D4B-7516N	D4B-7A16N	
	Adjustable rod lever (form D) (See Note 1)	D4B-5117N	D4B-5517N	D4B-5A17N	D4B-6117N	D4B-6517N	D4B-6A17N	D4B-7117N	D4B-7517N	D4B-7A17N	
Top plunger	Plain (form B)	D4B-5170N	D4B-5570N	D4B-5A70N	D4B-6170N	D4B-6570N	D4B-6A70N	D4B-7170N	D4B-7570N	D4B-7A70N	
	Roller (form C)	D4B-5171N	D4B-5571N	D4B-5A71N	D4B-6171N	D4B-6571N	D4B-6A71N	D4B-7171N	D4B-7571N	D4B-7A71N	
Wobble lever	Coil spring	D4B-5181N		D4B-5A81N	D4B-6181N		D4B-6A81N	D4B-7181N		D4B-7A81N	
(See Note 2)	Plastic rod	D4B-5187N		D4B-5A87N	D4B-6187N		D4B-6A87N	D4B-7187N		D4B-7A87N	
Standards		EN60947-5-1	$\overline{}$		EN60947-5-1	$\overline{}$		EN60947-5-1	\bigcirc		

Note: 1. The slow-action models with adjustable roller levers or adjustable rol levers are approved under the Forced Opening Certificate (TÜV) of the EN standard, but they do not conform to the GS-ET-15 Standard (BIA) and SUVA. The snap-action models with adjustable roller levers or adjustable rol levers are not approved under the Forced Opening Certificate (TÜV) of the EN standard.

2. The D4B- IN is a Limit Switch conforming to European standards, and PG13.5 is commonly used in Europe.

3. The wobble lever models are ordinary limit switches and are not approved under EN, GS, and SUVA's Forced Opening Certificate.

■ LEVERS (FOR SIDE ROTARY SWITCHES)

Description	Part number		
Actuator	Length	Diameter of roller	
Standard	31.5	17.5 dia.	D4B-0001N
Adjustable roller lever	25 to 89	19 dia.	D4B-0006N
Adjustable rod lever	145 max.		D4B-0007N
Interchangeable with D4B-0001	33.7	19 dia.	D4B-000RN

Note: Other lever types are also available.

Specifications _____

APPROVED STANDARD RATINGS

TÜV Rheinland: EN60947-5-1

Utilization category	AC-15
Rated operating current (Ie)	2 A
Rated operating voltage (Ue)	400 V

Note: As protection against short-circuiting, use either a gl-type or gG-type 10-A fuse that conforms to IEC269.

UL/CSA: (UL508, CSA C22.2 NO. 14)

A600

Rated voltage	Carry current	Current		Volt-amperes	
		Make	Break	Make	Break
120 VAC 240 VAC 480 VAC 600 VAC	10 A	60 A 30 A 15 A 12 A	6 A 3 A 1.5 A 1.2 A	7,200 VA	720 VA

Q150

Rating Codes for DC Control-Circuit Contacts

Thermal continuous	Maximum make or bre	eak current, amperes	Maximum make or break volt-amperes at	
test current, amperes	125 Volt	250 Volt	301 to 600 Volt	300 voits of less
2.5	0.55	—	—	69

■ CHARACTERISTICS

Ite	m		Snap-action	Slow-action			
Lif	e expectancy	Mechanical	30,000,000 operations min.	10,000,000 operations min.			
(se	e note 2)	Electrical	500,000 operations min. (at a 250 VAC, 10-A	resistive load)			
Op	perating speed		1 mm/s to 0.5 m/s				
Op	perating frequency		Mechanical: 120 operations/min Electrical: 30 operations/min				
Ra	ted frequency		50/60 Hz				
Ins	sulation resistance		100 $M\Omega$ min. (at 500 VDC) between terminal terminal and non-current-carrying part	s of the same polarity and between each			
Сс	ontact resistance		25 mΩ max. (initial value)				
Die	electric strength						
	Between terminals	of same polarity	U _{imp} 2.5 kV	U _{imp} 4 kV			
	Between terminals	of different polarity		U _{imp} 4 kV			
	Between current-carrying metal parts and ground		U _{imp} 4 kV	U _{imp} 4 kV			
	Between each terminal and non-current-carrying parts		U _{imp} 4 kV	U _{imp} 4 kV			
Ra	ted insulation voltag	ge (U _i)	600 VAC (EN60947-5-1)				
Сс	ounter electromotive	voltage at switching	1,500 VAC max. (EN60947-5-1)				
Op	perating environmen	tal pollution level	3 (EN60947-5-1)				
Сс	onditional short-circu	it current	100 A (EN60947-5-1)				
Cc (I _{th}	nventional enclosed ne)	thermal current	20 A (EN60947-5-1)				
Ele	ectric shock protection	on class	Class I (with grounding terminal)				
Vit	oration resistance		Malfunction: 10 to 55 Hz, 0.75 mm single amplitude				
Shock resistance			Destruction: 1,000 m/s ² min. Malfunction: 300 m/s ² min.				
Ambient temperature			Operating: -40°C to 80°C, with no icing (-25°C to 80°C for the flexible-rod type)				
Ambient humidity			Operating: 95% max.				
De	gree of protection		IP67 (EN60947-5-1)				
Weight			Approx. 250 g				

Note: 1. The above values are for initial operation.

2. The life expectancy is for an ambient temperature of 5°C to 35°C and ambient humidity of 40% to 70%. For further conditions, consult your OMRON sales representative.

3. The values in this table are for an ambient temperature of 5°C to 35°C and ambient humidity of 40% to 70%. For further conditions, consult your OMRON sales representative.

OPERATING CHARACTERISTICS

Model	D4B-□□11N	D4B-□□16N (see note 1)	D4B-□□17N (see note 2)	D4B-□□70N	D4B-□□71N	D4B-□□81N	D4B-□□87N	
OF max.	9.41 N		2.12 N	18.63 N		1.47 N		
RF min.	1.47 N		0.29 N	1.96 N				
PT	21±3°			2.0 mm max.		15° max.		
PT (2nd) (see note 3)	45°			3.0 mm				
OT min.	50°			5.0 mm				
MD max. (see note 4)	12°			1.0 mm				
POT min.	35° (Slow-action	models)		3.2 mm				
	55° (Snap-action models)							
POF min.	19.61 N			49.03 N				
TT	75°		7.0 mm					
FP max.				38 mm 51 mm				
OP				35±1 mm 48±1 mm				

Note: 1. The operating characteristics of these Switches were measured with the roller lever set at 31.5 mm.

2. The operating characteristics of these Switches were measured with the rod lever set at 140 mm.

3. Only for slow-action models.

4. Only for snap-action models.

Engineering Data

■ ELECTRICAL LIFE EXPECTANCY SNAP-ACTION MODELS

(cos ϕ = 0.4)

Nomenclature

Operation

CONTACT FORM (EN50013)

Model	Contact		Diagrams	Explanation
D4B-□1□N	1NC/1NO (Snap-action)	13 — Za 14 11 — 12	11-12 13-14 ON Stroke →	Only NC contact 11-12 has an approved positive opening mechanism. Terminal numbers 11-12 and 13-14 cannot be used as unlike poles.
D4B-⊡5⊡N	1NC/1NO (Slow-action)	2b $11 - 12$ $23 - 24$	11-12 23-24 ON Stroke →	Only NC contact 11-12 has an approved positive opening mechanism. Terminal numbers 11-12 or 23-24 can be used as unlike poles.
D4B-⊡A⊡N	2NC (Slow-action)	$\begin{array}{c} 2b \\ 11 \end{array} \begin{array}{c} 2b \\ 12 \\ 21 \end{array} \begin{array}{c} 22 \end{array}$	11-12 21-22 Stroke →	Both NC contacts 11-12 and 21-22 have an approved positive opening mechanism. Terminal numbers 11-12 and 21-22 can be used as unlike poles.

POSITIVE CONTACT OPENING MECHANISM

1NO/1NC Contact (Snap-action)

If metal deposition between mating contacts occurs on the NC contact side, they can be pulled apart by the shearing force and tensile force generated when part B of the safety cam or plunger engages part A of the movable contact blade. When the safety cam or plunger is moved in the direction of the arrow, the Limit Switch releases.

1NC/1NO Contact (Slow-Action)

Dimensions

Unit: mm (inch)

- Note: 1. Unless otherwise specified, a tolerance of ±0.4 mm applies to all dimensions shown in this section.
 - 2. When placing your order, specify the conduit type by adding a code (see below) to the first blank box in the model number of the selected switch. (For more ordering information, refer to the Model Number Legend, found in the *Ordering Information* of this data sheet.)

5: PG 13.5 (European)

6: G 1/2 (Japanese)

Conduit type for 3-conduit switches

7: 1/2-14NPT (North American)

Key for Part No. Code:

Conduit type for standard switches

- 1: PG 13.5 (European)
- 2: G 1/2 (Japanese)
- 3: 1/2-14NPT (North American)
- SWITCHES

Roller Lever D4B-

Adjustable Roller Lever Switch, Rubber Roller D4B-3113N, D4B-3513N, D4B-3A13N

Adjustable Roller Lever D4B-

D4B-N

3-Conduit Switches

Roller Lever D4B-0011N

Adjustable Roller Lever Switch, Rubber Roller D4B-7113N, D4B-7513N, D4B-7A13N

Adjustable Roller Lever D4B-

D4B-N

OMRON

ROLLER LEVERS

D4B-0001N

D4B-0003N

50 dia. rubber roller

R41 to 78.5 adjustable (F

N 50 dia. rubber roller R33.7 30 dia. M5 x 12 hexagon clamping screws

D4B-0004N

34

6

30 dia.

M5 x 16 hexagon clamping screws

3.2 -

24.2

12.8

D4B-0002N

D4B-0005N

17.8

CW, CCW or Two-way Operation

The head of Side Rotary Switches can be converted in seconds to CW, CCW, or two-way operation. The conversion procedure follows.

Operating position mark (arrow)

- Procedure
 - 1. Remove the head by loosening the four screws that secure it.
 - Turn over the head to set the desired operation (CW, CCW, or both). The desired operation can be selected by setting the mode selector knob shown in the figure. This knob is factory set to the "CW + CCW" (two-way operation) position.
 - Set the CW hole on the head at the operation position mark (arrow) for clockwise operation or set the CCW hole right at the arrow for counterclockwise operation. In either case, be sure to set the hole position exactly at the arrow point.

Head cover (Push and rotate)

Precautions

If the D4B- \Box N is applied to an emergency stop circuit or safety circuit for prevention of injury, use the D4B- \Box N model that has an NC contact equipped with a force-separation mechanism, and make sure that the D4B- \Box N operates in the positive mode. In addition, secure the D4B- \Box N with screws that are tightened in a single direction so that the D4B- \Box N cannot be easily removed. Then provide a protection cover for the D4B- \Box N and post a warning label near the D4B- \Box N.

In order to protect the D4B- \Box N from damage due to short-circuiting, connect a fuse breaking a current 1.5 to 2 times higher than the rated current in parallel with the D4B- \Box N.

If an application satisfying EN standards is to employ the D4BL, apply the 10-A gl or gG fuse approved by IEC269.

Do not apply the D4B- \Box N to the door without applying a stopper to the door.

If the D4B- \Box N is used with the actuator normally pressed, the D4B- \Box N may malfunction or may soon have reset failures. Be sure to check and replace the D4B- \Box N regularly.

Tightening Torque

	Туре	Proper tightening torque
1	Terminal screw (M3.5)	0.59 to 0.78 N • m
2	Cover-mounting screw (see note)	1.18 to 1.37 N • m
3	Head-mounting screw	0.78 to 0.98 N • m
4	Switch-mounting screw (M5)	4.90 to 5.88 N ∙ m
5	Connector	1.77 to 2.16 N • m
6	Cap screw (for three-conduit models)	1.27 to 1.67 N • m

Note: Apply a tightening torque of 0.78 to 0.88 N • m to conduit models.

CORRECT USE

Operating Environment

The D4B- \square N is for indoor use. The D4B- \square N may malfunction if the D4B- \square N is used outdoors. Be sure to use a model with a lever-type actuator for outdoor use instead.

Do not use the D4B- N in the following places:

- Places with radical temperature changes.
- Places with excessive humidity that may cause condensation.
- Places with excessive vibration.
- Places where metal dust, oil, or chemical may be sprayed to the D4B-□N.

Mounting

Use four M5 screws with washers to mount the standard model. Be sure to apply the proper torque to tighten each screw. The D4B- \square N can be mounted more securely by using the four screws plus two 5 $^{-0.05}/_{-0.15}$ -mm protruding parts, each of which has a maximum height of 4.8 mm as shown below.

Mounting Dimensions (M5)

Changes in Actuator Mounting Position

To change the angle of the lever, loosen the Allen-head bolts on the side of the lever.

The operating position indicator plate has protruding parts which engage with the lever, thus allowing changes to the lever position by 90° .

The back of the operating position indicator plate has no protruding parts. The lever can be set at any angle by attaching the operating position indicator plate to the Switch so that this side will face the lever. In this case, however, the D4B- \Box N will not be approved by SUVA or BIA. Make sure that the lever engages with the operating position indicator plate securely so that the lever will not slip.

Changes in Head Mounting Position

By removing the screws on the four corners of the head, the head can be reset in any of four directions. Make sure that no foreign materials will penetrate through the head.

Wiring

Do not connect the bare lead wires directly to the terminals but be sure to connect each of them by using an insulation tube and M3.5 round solderless terminals and tighten each terminal screw within the specified torque range.

The proper lead wire is 20 to 14 AWG (0.5 to 2.5 mm²) in size.

Make sure that all solderless terminals come into contact with the casing or cover as shown below, or the cover may not be mounted properly or the D4B- \Box N may malfunction.

Incorrect

Connector

Make sure that each connector is tightened within the specified torque range. The casing may be damaged if the connector is tightened excessively.

If the 1/2-14NPT is used, cover the cable and conduit end with sealing tape in order to ensure IP67.

The Pg13.5 connector must be Nippon Flex's ABS-08Pg13.5 or ABS-12 Pg13.5.

Use OMRON's SC-series connector which is suited to the cable in diameter.

Properly attach the provided conduit cap to the unused conduit opening and securely tighten the cap screw within the specified torque when wiring the D4B- \Box N.

Actuator Load

The load for the actuator (roller) of the Switch must be imposed on the actuator in the horizontal direction, or the actuator or the rotating axis may be deformed or damaged.

When using a long lever model like the D4B- 16N or D4B- 17N, the Switch may telegraph. To avoid telegraphing, take the following precautions.

- 1. Set the lever to operate in one direction. (For details, see the data sheet section: *CW*, *CCW* or *Two-way Operation*.)
- 2. Modify the rear end of the dog to an angle of 15° to 30° as shown below or to a secondary-degree curve.

Modify the circuit so as not to detect the wrong operating signals.

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS. To convert millimeters into inches, divide by 25.4

OMRON ELECTRONICS LLC

One Commerce Drive Schaumburg, IL 60173 **847-843-7900**

For US technical support or other inquiries: 800-556-6766

Cat. No. GC SAFETY-2 2/03

OMRON CANADA, INC. 885 Milner Avenue Toronto, Ontario M1B 5V8 416-286-6465

OMRON ON-LINE

Global - http://www.omron.com USA - http://www.omron.com/oei Canada - http://www.omron.ca

Specifications subject to change without notice

Printed in USA

Slim Enclosed Limit Switches

D4C

Sealed, Compact, Slim Prewired Limit Switch

- Rugged diecast housing
- Meets UL types 3, 4 and 13
- Triple-sealed construction
- Designed for easy gang mounting
- Rated load of 5 amps, 250 VAC
- Prewired with 3 m (9.8 ft) or 5 m (16.4 ft) of cable

Ordering Information

■ LIMIT SWITCHES

Actuator	3 m (9.8 ft) cable	5 m (16.4 ft) cable (See Note.)
Pin plunger	D4C-1601	D4C-1701
Sealed plunger	D4C-1631	D4C-1731
Roller plunger	D4C-1602	D4C-1702
Sealed roller plunger	D4C-1632	D4C-1732
Cross roller plunger	D4C-1603	D4C-1703
Sealed cross roller plunger	D4C-1633	D4C-1733
Bevel plunger	D4C-1610	D4C-1710
Coil spring	D4C-1650	D4C-1750
Roller lever	D4C-1620	D4C-1720

Note: 5 m cable types are available on special order only.

Construction.

Specifications_

■ RATINGS

Model	Rated voltage	Rated voltage Non-inductive load		Inductive load			Inrush current				
		Resistiv	esistive load Lamp load		Inductive load Motor lo		ad				
		NC	NO	NC	NO	NC	NO	NC	NO	NC	NO
D4C-1000	125 VAC	5 A	5 A	1.5 A	0.7 A	3 A	3 A	2.5 A	1.3 A	20 A	10 A
	250 VAC	5 A	5 A	1 A	0.5 A	2 A	2 A	1.5 A	0.8 A		max
	8 VDC	5 A	5 A	2 A	2 A	5 A	4 A	3 A	3 A		
	14 VDC	5 A	5 A	2 A	2 A	4 A	4 A	3 A	3 A		
	30 VDC	4 A	4 A	2 A	2 A	3 A	3 A	3 A	3 A		
	125 VDC	0.4 A	0.4 A	0.05 A	0.05 A	0.4 A	0.4 A	0.05 A	0.05 A		
	250 VDC	0.2 A	0.2 A	0.03 A	0.03 A	0.2 A	0.2 A	0.03 A	0.03 A		

Note: 1. Inductive loads have a power factor of 0.4 min. (AC) and a time constant of 7 ms max. (DC).

2. Lamp loads have an inrush current of 10 times the steady-state current.

3. Motor loads have an inrush current of 6 times the steady-state current.

■ APPROVED RATINGS

Approval	Standard	File no.
UL	UL508	E76675
CSA	CSA C22.2 No. 14	LR45746

UL/CSA Approved Ratings

B300 (D4C-1600, -1700)

NEMA B300 (D4C-1600, -1700)

Rated voltage	Current		Voltamperes		
	Make	Break	Make	Break	
120 VAC	30 A	3 A	3,600 VA	360 VA	
250 VAC	15 A	1.5 A			

Applicable Load Range

D4C

■ CHARACTERISTICS

Operating speed		0.1 mm to 0.5 m/s (D4C-oo20:1 mm to 1 m/s)				
Operating frequency	Mechanical	120 operations/min				
	Electrical	30 operations/min				
Insulation resistance						
Rated insulation voltage	(U _i)	300 V (IEC947-5-1)				
Rated impulse withstand	voltage (U _{imp})	2.5 kV (IEC947-5-1)				
Switching overvoltage		1,000 VAC, 300 VDC max. (IEC947-5-1)				
Short-circuit protective d	evice	10 A fuse (type gG) (IEC269)				
Conditional short-circuit	current	100 A (IEC947-5-1)				
Contact resistance		300 m [♦] (initial value with 3 m VCTF cable) 400 m [♦] (initial value with 5 m VCTF cable)				
Dielectic strength		1,000 VAC, 50/60 Hz for 1 min between non-continuous terminals 1,500 VAC, 50/60 Hz for 1 min between current-carrying metal part and ground, and between each terminal and non-current-carrying metal part				
Vibration resistance	Malfunction	10 to 55 Hz, 1.5 mm double amplitude				
Shock resistance	Destruction	Approx. 1,000 m/s ² (approx. 100 G)				
	Malfunction	Approx. 500 m/s ² (approx. 50 G)				
Ambient temperature	Operating	-10°C to 70°C (14°F to 158°F)				
Ambient humidity	Operating	95% max				
Operating environmental	pollution level	Pollution degree 3 (IEC947-5-1)				
Life expectancy	Mechanical	10,000,000 operations min. (at 1.5 to 2 mm OT)				
	Electrical	See: Engineering Data				
Enclosure ratings	UL	Types 3, 4 and 13				
	NEMA	Types 1, 3, 3R, 4, 5, 6, 12 and 13				
	IEC	IP67				
Weight		With 3 m VCTF cable: 360 g With 5 m VCTF cable: 540 g				

OPERATING CHARACTERISTICS

Legend: OF = Operating Force (max.); RF = Reset Force (min.); OT = Overtravel (min.); PT = Pretravel MD = Movement Differential (max.); OP = Operating Position

Part number	Description	OF	RF	ОТ	PT	MD	OP
D4C-□□01	Pin plunger	1.2 kg (42.32 oz)	450 g (15.87 oz)	3 mm (0.118 in)	1.8 mm (0.07 in)	0.2 mm (0.008 in)	15.7 ±1 mm (0.62 ±0.04 in)
D4C-□□31	Sealed plunger	1.8 kg (63.49 oz)	450 g (15.87 oz)	3 mm (0.118 in)	1.8 mm (0.07 in)	0.2 mm (0.008 in)	24.9 ±1 mm (0.99 ±0.04 in)
D4C-□□02	Roller plunger	1.2 kg (42.32 oz)	450 g (15.87 oz)	3 mm (0.118 in)	1.8 mm (0.07 in)	0.2 mm (0.008 in)	28.5 ±1 mm (1.12 ±0.04 in)
D4C-□□32	Sealed roller plunger	1.8 kg (63.49 oz)	450 g (15.87 oz)	3 mm (0.118 in)	1.8 mm (0.07 in)	0.2 mm (0.008 in)	34.3 ±1 mm (1.35 ±0.04 in)
D4C-□□03	Cross roller plunger	1.2 kg (42.32 oz)	450 g (15.87 oz)	3 mm (0.118 in)	1.8 mm (0.07 in)	0.2 mm (0.008 in)	28.5 ±1 mm (1.12 ±0.04 in)
D4C-□□33	Sealed cross roller plunger	1.8 kg (63.49 oz)	450 g (15.87 oz)	3 mm (0.118 in)	1.8 mm (0.07 in)	0.2 mm (0.008 in)	34.3 ±1 mm (1.35 ±0.04 in)
D4C-□□10	Bevel plunger	1.2 kg (42.32 oz)	450 g (15.87 oz)	3 mm (0.118 in)	1.8 mm (0.07 in)	0.2 mm (0.008 in)	28.5 ±1 mm (1.12 ±0.04 in)
D4C-0050	Coil spring	150 g (5.29 oz)			15°		
D4C-0020	Roller lever	580 g (20.46 oz)	150 g (5.29 oz)	40°	25°	3 °	_

Engineering Data_

ELECTRICAL LIFE EXPECTANCY

Operation

CONTACT FORM

(COM) 1 _____ 2 (NC) _____ 4 (NO) EN60947-1

Dimensions

Unit: mm (inch)

■ LIMIT SWITCHES

D4C-DD1 Pin Plunger Switch

CONTACT RATINGS

NEMA B300

■ CONTACT RESISTANCE

30 m Ω max, initial value with 3 m (9.84 ft) cable

ELECTRICAL APPROVALS

UL Recognized, File No. E76675 CSA Certified, File No. LR45746 D4C-DD31 Sealed Plunger Switch

D4C-DD02 Roller Plunger Switch

D4C-DD32 Sealed Roller Plunger Switch

Unit: mm (inch)

D4C-DD03 Cross Roller Plunger Switch

D4C-DD33 Sealed Cross Roller Plunger Switch

D4C-DD10 Bevel Plunger Switch

D4C =

D4C

D4C-DD50 Coil Spring Switch

D4C-DD20 Roller Lever Switch

Installation

MOUNTING HOLES

Two 5.2 (0.205) dia. or #10-24 machine screw holes

E0.15 (0.984 ±0.006)

Secure the switch to the mounting panel with two #10-24 machine screws and washers and tighten them from 3.6 ft•lb to 4.3 ft•lb torque.

■ GANG MOUNTING SWITCHES

A maximum of 6 switch units may be gang mounted. See the figures for proper orientation of switches.

■ PROPER CAM SHAPE

Operation method, shapes of cam and dog, operating frequency, and overtravel have a significant effect on the service life and precision of a limit switch. For this reason, the cam angle should be 30° max. The surface roughness of the cam should be 6.3 microns min., and the hardness of the cam must be about Hv450 (Brinell #425).

OVERTRAVEL MARKERS

To allow the roller lever type actuator to travel properly, set the roller lever according to the dog or cam stroke so that the arrowhead of the lever is positioned between the two overtravel markers as shown.

■ CABLE TIE POSITIONING

The bottom of the enclosed switch at the cable outlet is resimmolded. Secure the cable at a point 5 cm (1.97 in) from the switch bottom to prevent exertion of undue force on the cable.

OMRON

OMRON ELECTRONICS LLC

One East Commerce Drive Schaumburg, IL 60173 **1-800-55-OMRON**

Cat. No. CEDSAX4

11/01

OMRON ON-LINE

Global - http://www.omron.com USA - http://www.omron.com/oei Canada - http://www.omron.com/oci

Specifications subject to change without notice.

OMRON CANADA, INC.

885 Milner Avenue Scarborough, Ontario M1B 5V8 **416-286-6465**

Printed in the U.S.A.